F\\

Adobe

Adobe Premiere” 4.2

Software Development Kit
release 3 for Macintosh

Revised: 13 November 1996

Adobe Premiere 4.2 Software Development Kit, release 3
Copyright © 1992-96 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document. The software described in this document is
furnished under license and may only be used or copied in accordance with
the terms of such license.

Adobe, Adobe Premiere, Adobe Photoshop, Adobe Illustrator, Adobe Type
Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated
that may be registered in certain jurisdictions. Macintosh and Apple are
registered trademarks, and Mac OS is a trademark of Apple Computer, Inc.
Microsoft, Windows are registered trademarks of Microsoft Corporation. All
other products or name brands are trademarks of their respective holders.

Most of the material for this document was derived from work by Bryan K.
"Beaker' Ressler, Randy Ubillos, Dave Wise, Nick Schlott, and Matt Foster. It
was then compiled, edited, and reformatted into its current form by Brian
Andrews.

Version History

14 September 1994 Bryan K. ""Beaker'" Ressler Version 4.0

14 December 1995 Brian Andrews Version 4.2 - Reformatted and
updated for Premiere 4.2

9 February 1996 Brian Andrews Version 4.2r2 - Minor editorial
updates.
13 November 1996 Brian Andrews Version 4.2r3 - Incremental updates

and bug fixes, expanded
Photoshop section.

Adobe Premiere Software Development Kit 2

Contents

1 Introduction 9
Windows vs. Macintosh Plug-Ins 9
How toUse ThisGuide i i 9
About ThisGuide. 10
What's NeWo 10
Plug-In OVerVIeW e e 11
RESOUICES 12
Native Power Macintosh Plug-Ins. 12
Building Premiere Plug-Ins 13
Premiere Terminology 14

TIMECOOE . .o 14
Thingsto Remember 15

2 TheUtility Library. 16

General Macintosh Routines. 16
Memory ROUtineS 16
Dialog Routines 17
WiIndow ROULINES e 26
StriNg ROULINES e 27
Graphics ROUtiNeS 28
List Manager ListSROULINES 33
Data ListS ROULINES e 34
File ROULINESo e 35
MeNU ROUTINES e e 36
Math ROULINES 37

Premiere-SpecificRoutines 38
Interface Compatibility Routines 38
Global Accessor Routines i 41
Text, Strings, and Memory Routines 41
Clip ROULINES . . . e e e 44
File ROULINES 47
Debugging Routines 50
Cursor Control Routines i 51
EVeNt ROULINGS 52
Standard File Routines i 53
Dialog Routines 54
WINdow ROULINES 56
GraphiCs ROULINES e 57
Time Code ROULINES e 59
Data Export Module Utilities 62
EDL Export Module Utilities 63

Adobe Premiere Software Development Kit 3

Contents

3 Bottlenecks 66
The BottleRec Structure. e 66

The Bottleneck Routines i 67

4 Globals............. 71
Look But Don’t Touch!. 71
Read/Write Globals 71

Read Only Globals 72

S CDEFs...... /8
Control HItS 78
CoNtrol TYPES . . oot 79
Horizontal Sliders 79

Vertical Sliders 80

POPUP MENUS 80

6 Transitions.................., 81
FXVS 1000 . ..o ot i 82

TEXT 2000 . . .ottt e 82

FOPt 1000 . .ottt 82
Fopt—first byte: Valid corners 83
Fopt—second byte: Initial corners 83
Fopt—third byte: Bitflags 83
Fopt—fourth byte: Exclusiveflag 84
Fopt—fifth byte: Reversible 84
Fopt—sixth byte: Hasedgesflag 84
Fopt—seventh byte: Movable start pointflag 85
Fopt—eighth byte: Movable end pointflag 85

FXDF -1 85
SPEX/SPEX 1000t e 87
ESEXECULE 87

BSSBTUP « o it 88

The EffectRecord Structure i 88
specsHandle 88

SOUNCEL . . . 88

SOUICEZ ottt ettt e e 88
destination 88

Pt . 89

total ... 89
PreVIEWING . . . oo 89
ArrOWFIagS . . . o 89

Adobe Premiere Software Development Kit 4

Contents

POV IS . . ittt 89
SOUNCE . o it it e et et e e e e e 89

] 172 1 89
BN L 89
N . . . 89
privateData 90
callBack 90
bottleNecks 90
VEISION . o ettt e 90
SIZEeFlags 90
flags 91
DS . o 91
EXampPles. . .. 91
Additive Dissolve 91
CrOSS ZOOM . . .ottt 91
WP . 91
7 VideoFilters 92
FXVS 1000 . .\ e 92
FIED 1000. . . . oot e 92
VEIE/VFIT 1000o e e e e e e 94
TS EXECULE 94
FSSBtUD .. 94
fsDisposeData e 95
The VideoRecord Structure e 95
specsHandle 95
SOUICE . o ittt et e e e e e e e 95
destination 95
Pl . 95
total ... 95
PreVIEWING 96
privateData 96
callback 96
bottleNecks 96
VEISION Lottt 96
SIzeFlags . ..o 96
flags ... 96
DS . 97
InstanceData 97
EXamples. . .. 97
VIideOo NOISE 97
BurnTime Code 97

Adobe Premiere Software Development Kit 5

Contents

8 AudioFilters, 98
FXVS 1000 . .o 98
FIED 1000. . . .ot e 98
AFI/AFIT 1000o e 99

TS EXECULE . .. e 99
S U .. 99
fsDisposeData 99
The AudioRecord Structure. e 100
specsHandle e 100
SOUICE . ittt et e e e e e e 100
destination 100
sampleNUM ... e 100
sampleCount 101
PreVIEWING . . . oot 101
privateData 101
callback e 101
totalsamples 101
flags ... e 101
LAl . . . 102
bottleNecks 102
VBISION L 102
eXtraFlags 102
DS . o e 102
InstanceData 102
EXamples. . .. 102
Backwards [Audio] 102
PaNn . 102

9 DataExportModules................... 103
FXVS 1000 . .o e 103
FLAG 1000. . ..ottt 104
EXPD/EXPd 1000. 104

BAEXECULE 104
The DataExportRec Structure 104
MarKersS . .. 105
NUMTramMES 105
framerate 105
bounds 105
audflags 105
AUArate . .. 105
getVideo 105
OetAUdIO . ..o 106
privateData 107

Adobe Premiere Software Development Kit 6

Contents

specialRate 107
Relevant Routines in the Utility Library. 107
EXamples. . .. 107

Flattened MOVIEo 107

Storyboard Image 107

10 EDL ExportModules.................... 109
FXVS 1000 . ..ottt e 109
EXPM/EXPmM 1000 o 110

EXEXECULE 110

eXTrUe30 S . .. e 110
The ExportRecord Structure i 110

dataHandle 110

timeBase 110

pProjectName 111
The EDL Project Data Format 111
WipeCodeDetails 114
Relevant Routines in the Utility Library. 115
EXamples. . .. 116

GeneriCEDL 116

11 ZoomModules 117
ZOOM/ZoOM 1000.o 117

CMACaNZOO0M . . . 118

CMAZOOMIN . 118

CMAZoomOUL 118

CMACanDo 118

cmdGetSupportedModes 118

cmdGetMode 119

cMASetMOde 119
The ZOOMREC StruCturettt e e e 119

theDeVviCe 119

boardID 119

zoombData 119

MOAE . . 119
Other Details e 120
EXamples. 120

Video - SuperMac 120

12 Device Control Modules. 121
DevC/Deve 1000ot 121
ASINIt . o 122

Adobe Premiere Software Development Kit 7

Contents

ASSEtUP . . oot 122
ASEXECULe 122
ASCleanupo 122
ASReStarto 122
ASQUIBT 122
The DeviceRec Structure i 123
deviceDatac. 123
COMMANA . .o 123
MOAE . . 123
timecode 123
timeformat 123
timerate 124
featUresS . .. 124
I O o . 124
preroll 124
callback 124
PausSeProc 124
ReSUMEPIoOC 124
Commands 125
CMAGetFeatures 125
CMNASTATUS . . . o 127
cmdNewMode 127
CMAGOTO . . . o 128
cmdLocate 128
cmdShuttle 128
CMAJOGTO . .o 129
Implementation TIPS it 129
Handling dslnitand dsRestart 129
Puttinguperroralerts 130
EXamples. 130
DEVICE . . 131
13 OtherPlug-InTypes 132
Photoshop Filters. e 132
Window Handler Modules (‘(HDLR?) 132
Audio/Video Import Modules (‘Draw’).o i 133
Bottleneck Modules (‘Botl’). 133
How to Get More Information, 133
INndex 134

Adobe Premiere Software Development Kit 8

Introduction

Welcome to the Adobe Premiere™ 4.2 Software Developers Toolkit for
Macintosh!

With this toolkit you can create software, known as plug-in modules, that
expand the capabilities of Adobe Premiere. The Adobe Premiere Plug-In
Toolkit is for developers who wish to write plug-in modules for use with
Adobe Premiere. Premiere plug-ins are called by Premiere to perform specific
functions, such as filtering a frame of video or controlling a tape deck.

This guide assumes that you are proficient in C language programming and
tools. The source code files in this toolkit are written for the Metrowerks
CodeWarrior software development environments.

You should have a working knowledge of Adobe Premiere, and understand
how plug-in modules work from a user’s viewpoint. This guide assumes you
understand Premiere and basic video editing terminology. For more
information, consult the Adobe Premiere Users Guide and/or the Adobe
Premiere Classroom in a Book.

Windows vs. Macintosh Plug-Ins

This document describes only the Macintosh version of the Premiere SDK,
there is another version of the entire SDK (including this documentation)
available for Windows developers. Adobe Premiere 4.2 is available as a
Macintosh and a Windows application. All the basic plug-in module types for
Premiere are available on both platforms with the exception of Zoom
modules, which are only available on Macintosh. The mechanism by which
plug-ins operate is quite similar. Adobe encourages developers of Premiere
plug-ins to create them for both platforms.

A key difference is the Macintosh version of Premiere offers a large function
library that can be used for doing interface work, such as controls, that are
not available to Premiere for Windows developers.

How to Use This Guide

This toolkit documentation starts with information that is common to all the
plug-in types. The rest of the document is broken up into chapters specific to
each type of plug-in.

Chapter 2 describes The Utility Library. This provides both general Macintosh
and Premiere specific calls.

Chapter 3 describes the Bottlenecks, which are a set of procedures and
structures to perform common operations.

Chapter 4 describes Premiere’s Globals which can be examined by a plug-in.

Adobe Premiere Software Development Kit 9

Introduction

Chapter 5 describes a set of CDEFs, or control definition procedures, that a
plug-in can use to help achieve a consistent look and feel with the rest of
Premiere.

Chapter 6 on Transitions, is the first chapter on specific plug-in types.
Transitions take two GWorlds and processes them into a single destination
GWorld, usually applying some special transition effect.

Chapter 7 describes Video Filters, which take a single GWorld and processes
it into a destination GWorld, usually applying a visual effect.

Chapter 8 describes Audio Filters, which take a single source buffer of audio
and processes it into a destination buffer, usually applying an audio effect.

Chapter 9 describes Data Export Modules. These appear in Premiere’s Export
submenu and export a given clip to some other format.

Chapter 10 describes EDL Export Modules. These also appear in Premiere’s
Export submenu and are used to export the current project into a text edit
decision list.

Chapter 11 describes Zoom Modules. Zoom modules handle hardware-
specific details of zooming and video card mode-switching.

Chapter 12 describes Device Control Modules. These allow Premiere to
control hardware devices such as tape decks or laser disc players.

Finally, Chapter 13 mentions a few Other Plug-In types, such as Adobe
Photoshop filters, which are largely beyond the scope of this document.

Perhaps the best way to use this toolkit documentation is to read this
Introduction chapter, then read the chapter specific to the type of plug-in
you’re writing. You should then study and understand the sample plug-ins of
the type you’re writing. While studying the samples, you’ll find function calls
to routines provided in the Adobe Premiere library, a stub library of many
useful routines. When you need documentation on specific library routines,
look in chapter 2, The Utility Library.

If you’re programming transitions or filters, you may need sliders or other
special controls. In that case, look at the CDEFs chapter for important
information about proclDs and calling conventions.

About This Guide

This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger font family is used throughout the manual with Courier used for
code examples.

To print this manual from within Adobe Acrobat Reader, select the “Shrink
to Fit” option on the Print dialog.

What’s New

This version of the Adobe Premiere Software Developers Toolkit contains the
following new features:

Adobe Premiere Software Development Kit 10

Introduction

Supports the newest release of Adobe Premiere for Macintosh,
version 4.2. The libraries and headers files have been updated since
the last release with the 4.2 changes commented in the header files.

Supports development using Metrowerks CodeWarrior 10. While the
example plug-ins should still build using MPW, the emphasis has
been on converting the previous examples to the new CodeWarrior
environment and making use of some CodeWarrior specific features
(such as precompiled headers) to speed development.

Improved documentation. We hope you’ll find this new document
format more readable for both on screen and printed viewing.

There have been some improvements to device control which you’ll
find described in chapter 12, Device Control Modules, and also in the
header files. Several new feature bits, codes, and commands have
been added.

Several new globals are available for inspection, including one which
aids in error detection. You find these described in Globals, chapter
4, and in the header files.

An instance handle has been added to the Video and Audio records
which allows Premiere to retain and return state information for a
plug-in. See Video Filters, chapter 7, Audio Filters, chapter 8 and the
header files for information on this.

Premiere can load and apply Adobe Photoshop filters to video clips.
Chapter 13 provides an expand discussion of this capability and the
limitations of Premiere’s support of the Photoshop plug-in API.

Plug-In Overview

Adobe Premiere plug-ins are separate files that are placed in Premiere’s
Plug-Ins folder. Plug-in files contain a single-entry-point code resource of a
type specific to the purpose of the plug-in. Each plug-in can have private
resources in its plug-in file.

Table 0-1: Overview of Adobe Premiere Plug-In Modules

Type Name Description

‘SPEX’ Video transition Create a C video frame from A and B frames
‘VFI Video filter Modify (“filter’”) one frame of video

‘AFIt’ Audio filter Modify (“filter”’) one audio “blip”

‘ExpD’ Data export module Export video or audio from a clip

‘ExXpM’ EDL export module Export construction window information
‘ZooM’ Zooming module Perform hardware zooming on a video card
‘DevC’ Device control module Control a hardware device like a tape deck
‘Draw’ A/V import module Import audio or video from a file

‘HDLR’ Window module A complete functioning window, like Title
‘Botl’ Bottleneck module Accelerate Premiere by overriding bottlenecks
"8BFM’ Photoshop filter Apply a Photoshop filter to one frame of video

Adobe Premiere Software Development Kit 11

Introduction

The last three types of plug-ins, ‘Draw’, ‘HDLR’, and ‘Botl’, are documented
separately in the Adobe Premiere Plug-In Toolkit Supplement, also known as
the Advanced SDK, which is available only under non-disclosure and by
special request from Adobe. See the Other Plug-Ins chapter at the end of this
document for more information.

Adobe Premiere 4.2 requires a Macintosh with a 68020 or later processor or a
Power Macintosh. Premiere runs under System 7.5 or later, and requires
QuickTime 2.1 and 32-bit QuickDraw. Your plug-ins can assume the presence
of these software components.

Resources

Plug-in modules reside in their own resource file located in Premiere’s Plug-
Ins folder. When a plug-in is called to perform its function, the current
resource file is set to the plug-in’s resource file, and it is free to load and use
any of the resources in the plug-in file. In most cases, plug-ins are provided
with a facility by which to store and retrieve whatever parameters might be
associated with their function. For instance, filters can fill out a “settings
blob” that gets saved by Premiere in a Premiere project file, then later that
blob is handed back to the filter when it is called upon to perform its
function. If a plug-in has extra state information or defaults, they can be
stored in the plug-in’s resource fork.

Native Power Macintosh Plug-Ins

Adobe encourages you to create “fat” (68K + PPC) Premiere plug-ins as
Adobe Premiere 4.2 is a native Power Macintosh application. All the plug-in
modules for Premiere are also PPC native, but Premiere can still run 68K
plug-ins on a Power Mac.

When Premiere is running on a Power Mac and it calls a plug-in, it looks first
for a Power Mac resource (Table 1-2, below). If no PPC code resource is
present, it loads the 68K code resource and calls it through the 68K
emulator.

Table 0-2: Alternate Resource Types for Power Mac

Power Mac 68K Mac
‘SPFX’ ‘SPFX’
‘VFIT ‘VFIt’
‘AFIT’ ‘AFIt’
‘Expd’ ‘ExpD’
‘Expm’ ‘ExpM’
‘Zoom’ ‘ZooM’
‘Devc’ ‘DevC’
‘Draw’ ‘Draw’
‘HDLr’ ‘HDLR’
‘Botl’ ‘Botl’
"8BFmM’ "8BFM’

Adobe Premiere Software Development Kit 12

Introduction

Note that the 68K and PPC resource types are the same except for the
capitalization of the final letter.

The PPC code resource for a plug-in must contain a straight resource PEF
with no routine descriptor or glue code at the beginning. That is, if you
derez the PPC resource, you should see something like this:

data ' VFI T' (1000) {

$"4A6F 7921 7065 6666 7077 7063 0000 0001" /* Joy! peffpwpc.... */
$" AAA0 C123 0000 0000 0000 0000 0000 0000" /* ™@H............ *|
$" 0003 0002 0000 0000 FFFF FFFF 0000 0000" /* YT *]
b

Note that some development environments might place some standard
defProc-type 68K glue code at the beginning of PPC code you place in a
resource. The code is roughly equivalent to the code in MPW’s MixedMode.r
file for the description of the ‘sdes’ “safe fat resource.” This won’t work!
You’ll need to strip or prevent this glue code if you intend to use these
environments for Premiere plug-in development.

Building Premiere Plug-Ins

This section contains information on building Premiere plug-ins with MPW or
Metrowerks CodeWarrior. All examples in this SDK are built using one or
both of these development environments.

MPW

Here are the basic MPW commands you’d use to build a “fat” Adobe
Premiere video filter:

Build the 68K resource

c -r -b2 -nc68020 -0 MyFiler.c.o M/Filter.c

link -rt VFIt=1000 -m XFILTER -t VFIt -c PrM -0 M/Filter 0
MyFilter.c.o UillLib.o

Build the Power PC resource

ppcc -d PrPPC -align mac68k -appleext on MyFilter.c

ppclink -nf -main xFilter -o MyFilter.xcoff d

MyFilter.c.o @

ProcSt ubs. xcoff 0

{PPCLi brari es} Qui ckTi neLi b. xcoff 0

{PPCLi braries}DragLib d

{PPCLi braries}StdCRuntinme.o 0

{PPCLi braries}StdCLi b. xcof f 0

{PPCLi braries}InterfaceLi b.xcoff 0

{PPCLi brari es} PPCCRunti me.o 0

{PPCLi br ari es} Mat hLi b. xcof f

makepef -b -0 MyFilter.pef MyFilter.xcoff 0

-1 Qui ckTi nmeLi b. xcof f =Qui ckTi nmeLi b~ d

-1 DraglLib. xcof f =Dr agLi b~ 0

-1 Mat hLi b. xcof f =Mat hLi b 0

-1 StdCLib. xcoff=StdCLib a

-1 Interfacelib.xcoff=InterfaceLib d

-1 ProcStubs. xcof f =AdobePr eni ere

echo "read 0 VFI To' (1000) o"MyFitler.pefo";" | 0
rez -a -t VFIt -¢c PrM -0 M/Filter

Rez the filter’'s resources
rez -a -o MFilter MyFilter.r

Adobe Premiere Software Development Kit 13

Introduction

Metrowerks CodeWarrior

Starting with version 4.2 of the Adobe Premiere Software Developers
Toolkit, the Metrowerks CodeWarrior environment is supported. The 12
example plug-ins supplied with this toolkit all include CodeWarrior 10
project files for building fat plug-ins. By looking at the project preferences,
you should be able to see how to set up your own projects. A few things to
note are:

. Since Adobe Premiere and the toolkit libraries were built using
MPW, you need to use MPW C calling conventions when making the
calls described in this document. The example projects all have this
option set globally in the project preferences.

. Included with the examples are library files for linking the 68k and
PPC plug-ins with both CodeWarrior and MPW. You’ll be able to tell
which to use by looking at the sample projects and .lib files folder.

. The .h files folder contains all the header files. To greatly speed
compilation, the header files have been precompiled for use by
CodeWarrior. The examples make use of this, so if you modify any of
Premiere’s header files, don’t forget to precompile them. The .pch
files contained in .h files will aid you in this.

Premiere Terminology

In the descriptions of the various types of Premiere plug-in modules, there
are several terms that you’ll see repeatedly. Refer to the Adobe Premiere
User Guide for more information.

Clip

Clips are the pieces of media (movies, graphics, sounds, etc.) that become a
part of an Adobe Premiere project. From a programming standpoint,
Premiere identifies clips by their clip ID. Premiere keeps track of a variety of
information about each clip, such as its type, markers, and in- and out-
points. You’ll see some utility routines documented below that return or
operate on clip IDs.

File

Each clip in Premiere has an associated file, from which the original data is
drawn. With the exception of Titles, Premiere does not modify the
underlying file associated with a clip. Within Premiere, files are identified by
a file ID. Adobe provides some utility routines that deal with file IDs.

Marker

Premiere allows movies and animations to have markers associated with
different frames in the clip. There are 10 numbered markers and up to 1000
unnumbered markers. Internally, the in-point and out-point of a clip are just
special markers.

Timecode

Several Premiere structures and callbacks include a timecode field. For the
most part, the meaning of timecode should be apparent from the context in
which it is used. In general, timecode is always a long and simply refers to
the frame count.

Adobe Premiere Software Development Kit 14

Introduction

Things to Remember

When programming plug-in modules for Adobe Premiere there are a few
handy points of information that will ease your development.

Unless stated otherwise, strings in Premiere are always Pascal strings
(that is, a length byte followed by that many bytes of text).

Use Userltem, ShowModal, and DisposeModal for modal dialogs (see
the chapter The Utility Library for details).

Whenever one’s available, use the “Pr-" versions of a routine. For
instance, use PrModalDialog instead of ModalDialog. See the
category Interface Compatibility in the Premiere-Specific Routines
section of the chapter The Utility Library.

Use PrDebug to send formatted strings to the Debug window in
Premiere to help you debug your plug-ins. To bring up the Debug
window, press Control-Option-0 (zero).

Premiere plug-ins are usually loaded and called only when needed.
Typically after five seconds of non-use, a plug-in’s code is unloaded
and the plug-in file is closed. This means that for some plug-ins (like
SPFX, VFIt, and AFIt), you can leave Premiere running, switch back to
your development environment, make a change, recompile and re-
link the plug-in, switch back into Premiere, and try out your
changes! This is a great time-saver when developing filters and
transitions.

Adobe Premiere Software Development Kit 15

The Utility Library

Many Adobe Premiere plug-ins perform similar functions. To reduce code
size and leverage existing code, Premiere has an extensive utility library that
provides both general Macintosh utility routines as well as Premiere-specific
calls. To use this library, you link your plug-in with a stub library. The actual
code for the utility routines is dynamically linked at run-time by Premiere
when you call the library routines.

The documentation for these routines is divided into two major categories:
general Macintosh routines and Premiere-specific routines. Within those
categories, the routines are divided into functional categories.

General Macintosh Routines

Memory Routines

LockHHi: Move a handle high in the heap and lock it.
voi d LockHH (void *h);

This routine moves the given handle h high in the heap
with a call to MoveHHi, then locks it with HLock. Note
that while h is declared as a void *, it must be a handle.

SafeSetHandleSize: Premiere’s more effective version of SetHandleSize.

short Saf eSet Handl eSi ze (

void *h,

| ong size);
This routine attempts to set the size of handle h to the
new byte size size, just like the Mac Toolbox routine
SetHandleSize. SafeSetHandleSize, however, is willing
to reallocate and copy the handle, which SetHandleSize
is not. Therefore, SafeSetHandleSize will sometimes
succeed when SetHandleSize fails. We recommend using
SafeSetHandleSize instead of SetHandleSize within
Premiere plug-ins. Note that while his declared as a void
*, it must be a handle.

FillMem: Set an area of memory to a specified byte value.

void FillMem (
voi d *dest,
| ong count,
char val ue);

This routine sets count bytes starting at dest to the byte
value value. It is a handy way to clear a structure to all
zeros or fill an area of memory.

Adobe Premiere Software Development Kit 16

StructsSame:

Dialog Routines

EnableDItem:

DisableDIltem:

HiliteDControl:;

GetCValue:

The Utility Library

Compares two structures for an exact match.

char StructsSane (
voi d *a,
voi d *b,
| ong size);

This routine compares the structure pointed to by
pointers a and b for size bytes. If they are exactly byte-
for-byte the same, it returns true, otherwise it returns
false. Be careful about using StrucsSame to compare
structures containing strings (like FSSpecs, for instance)
because dead bytes at the ends of the strings will make
StructsSame return false when the structures are
functionally identical.

Enable a dialog item.

voi d Enabl eDl tem (
Di al ogPtr theDi al og,
short item);

This routine enables item number item in dialog
theDialog by setting the enabled bit in the item’s item

type.

Disable a dialog item.

voi d Di sabl eDItem (
D al ogPtr theD al og,
short item);

This routine disables item number item in dialog
theDialog by clearing the enabled bit in the item’s item

type.

Set a control in a dialog to a specific highlight value.

void HiliteDControl (
D al ogPtr theD al og,
short item
short val ue);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls HiliteControl to set that control’s
highlighting to value.

Get the value of a control in a dialog.

short Get Cval ue (
Di al ogPtr theDi al og,
short item);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then returns GetCtlValue for that control. This
routine is convenient for retrieving the values of such
controls as check boxes, radio buttons, and scroll bars in
dialogs.

Adobe Premiere Software Development Kit 17

SetCValue:

GetGroupVal:

DrawDItem:

GetDRect:

SetDRect:

The Utility Library

Set the value of a control in a dialog.

voi d Set Cval ue (
Di al ogPtr thebD al og,
short item
short val ue);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls SetCtlValue to set the value of that
control to value. This routine is convenient for setting
the values of such controls as check boxes, radio
buttons, and scroll bars in dialogs.

Return the number of the set control in a radio button
group.
short Get G oupVal (

Di al ogPtr thebD al og,

short first,
short last);

This routine looks in dialog theDialog for the first “set”
radio button between item number first and item
number last (inclusive) and returns the relative value.
So, if first is set, GetGroupVal returns 0. If last is set,
GetGroupVal returns last - first.

Force-redraw a single dialog item.

void DrawDl tem (
Di al ogPtr thebD al og,
short item);

This routine redraws a item number item in dialog
theDialog without redrawing any other items. It saves
the clipping for the dialog, sets the clipping to the
single specified item, calls UpdtDialog to redraw the
item, ValidRgn to validate the item, then restores the
dialog’s clipping.

Get the rectangle of a dialog item.

voi d Cet DRect (
Di al ogPtr theDi al og,
short item
Rect *box);

This routine returns the rectangle of item number item
from dialog theDialog via the reference parameter box.

Set the rectangle of a dialog item.

voi d Set DRect (
W ndowPt r t hewi ndow,
short item
Rect *box);

This routine sets the rectangle of item number item
from dialog theDialog via to the rectangle pointed to by
box.

Adobe Premiere Software Development Kit 18

Invalltem:

GetDType:

GetDHandle:

ModifyDItem:

Userltem:

The Utility Library

Invalidate a dialog item.

void Invalltem (
Di al ogPtr thebD al og,
short item);

This routine invalidates the item rectangle for item
number item in dialog theDialog. It does not force-
redraw the item. It will be redrawn the next time
ModalDialog or DialogSelect is called.

Returns a dialog item’s type.

voi d Cet DType (
Di al ogPtr theDi al og,
short item
short *itenype);

This routine returns the item type of item number item
from dialog theDialog via the reference parameter
itemType. Note that the Dialog Manager stores some
bit-flags in the item type, so you generally cannot do
checks like (itemType == iconltem). See IM-I p404.

Returns a dialog item’s item handle.

voi d CGet DHandl e (
Di al ogPtr theD al og,
short item
Handl e *itenHand);

This routine returns the item handle of item number
item from dialog theDialog via the reference parameter
itemHand.

Sets the item handle and rectangle for a dialog item.

void ModifyDitem (
Di al ogPtr thebD al og,
short item
Handl e it enHand,
Rect *box);

This routine sets the item handle and item rectangle to
itemHand and box, respectively, for dialog item number
item in dialog theDialog.

Important! Do not use ModifyDItem to install user item
procedures or your code will not run correctly on the
PowerPC. For that purpose use the Userltem function
described below.

Sets the item handle and rectangle for a dialog item.

void Userltem (
Di al ogPtr theDi al og,
short item
UserltenProcPtr theProc);

This routine sets the item handle to theProc for dialog
item number item in dialog theDialog. This is a
convenient way to install user item procedures into
dialog items.

Important! On the PowerPC this function plays a key role.
When you use Userltem to install a user item procedure on
the PowerPC, Userltem allocates an appropriate UPP and

Adobe Premiere Software Development Kit 19

FlashControl:

FrameGrayButton:

FrameButton:

ButtonFrame:

PositionDialog:

The Utility Library

passes it to the Dialog Manager. The Premiere DisposeModal
function iterates through the dialog’s item list and frees
these UPPs before disposing the dialog. For this reason it is
of utmost importance to use Userltem and no other function
to install user item procedures in your dialogs. See also the
functions SetCAction (below), and ShowModal and
DisposeModal in the Dialog Routines category of the
Premiere Specific Routines section in this chapter.

Flashes a dialog button item as if it were clicked.

voi d Fl ashControl (
Di al ogPtr theDi al og,
short item);

This routine flips item number item from dialog
theDialog (which must be a control-type item), to its
“highlighted” state, holds it that way for 15 ticks (1/4
second), then flips it back. Normally this is used for
providing visual feedback to the user when a keyboard-
equivalent for a button has been used.

Frame the default button in a dialog, perhaps in gray.

voi d FraneGrayButton (
Di al ogPtr theD al og,
short item
char gray);

This routine draws the three-pixel-wide bold outline
around the item number item in dialog theDialog. If the
parameter gray is true, the bold outline is drawn in gray.
If the parameter gray is false, the outline is drawn in
black. This routine is normally used to draw the bold
outline around the default button in a dialog.

Frame the default button in a dialog with a black bold
outline.

voi d FranmeButton (
Di al ogPtr thebDi al og,
short item);

This routine draws the three-pixel-wide bold outline
around the item number item in dialog theDialog. The
outline is drawn in black.

A user item procedure to draw the default button frame
around a button.

pascal void ButtonFrane (
Di al ogPtr thebD al og,
short item);

This routine, when installed as a user item procedure,
draws a 3-pixel-thick rounded rectangle within item’s
rectangle. Typically the user item is placed centered
over a button and is exactly four pixels larger than the
button in all directions.

Position a dialog appropriately on the main screen.

voi d PositionDi al og (
short thel D,
Poi nt *where);

Adobe Premiere Software Development Kit 20

Validate:

SetlVval:

GetlVal:

The Utility Library

This routine prepositions a dialog with DLOG resource
ID thelD appropriately on the main screen. It returns the
upper-left point of the dialog in global coordinates via
the reference parameter where. Call this routine before
calling GetNewDialog.

Validate the numeric value of a dialog editText item.

char Validate (
Di al ogPtr theDi al og,
short item
| ong m n,
| ong max);

This routine gets the text of editText item item from
dialog theDialog and converts the string into a long. It
then checks to make sure the item’s value is between
min and max (inclusive). If the item’s value is in range,
Validate returns false. If the item’s value is not in range,
Validate sets the item’s text to either min or max
(depending upon which direction the item value was
out of range), select the item, does a SysBeep, and
returns true. A convenient way to use Validate is to put
a series of Validate calls in an if statement:

if (!Validate(theD al og, kLength, 0, 15) &&
!Val i dat e(t heDi al og, kWdth, -10, 10) &&
!'Val i dat e(t heDi al og, kTinme, 0, 100))

{
/1 1t’s okay to dism ss the dial og

}

el se

{
/1 At |east one value is out of range, but validate
/1l has already selected it so the user knows which
/1l one it is. Just fall back into our dialog |oop

}

Set the value of an editText item to a numeric value.

voi d SetlVal (
Di al ogPtr theDi al og,
short item
| ong val);

This routine converts the parameter val to a string and
sets the text of item number item in dialog theDialog to
that string. The conversion is done with a call to
NumToString, so the range is -2,147,483,649 to
2,147,483,648.

Get the value of an editText item containing a numeric
value.

l ong CGetlVal (
Di al ogPtr thebD al og,
short item);

This routine converts the text from editText item
number item in dialog theDialog to an integer and
returns that value. Conversion is done with a call to
StringToNum, so the range is -2,147,483,649 to
2,147,483,648.

Adobe Premiere Software Development Kit 21

SetEText:

GetEText:

DrawltemBox:

DrawltemFrame:

The Utility Library

Set the text of an editText item.

voi d Set EText (
Di al ogPtr thebD al og,
short item
StringPtr str);

This routine sets the text of the editText item number
item in dialog theDialog to the text given in parameter
str. Note that str must be a Pascal string.

Get the text of an editText item into a string.

voi d Cet EText (
Di al ogPtr theDi al og,
short item
StringPtr str);

This routine gets the text of the editText item number
item in dialog theDialog into the string pointed to by
parameter str. Note that str is returned as a Pascal
string.

A user item procedure to draw a rectangular frame in a
dialog.

pascal void Draw temBox (
Di al ogPtr theD al og,
short item);

This routine, when installed as a user item procedure,
draws a box from the bottom of the previous item’s
rectangle to the bottom of item’s rectangle, with the
width of item’s rectangle. Typically, you use two user
items to specify the frame:

ECEDITLID = 12 =

= Option 1 BS . @ Option 1
) Option 2 [3 . (O Option 2
> Option 3 [4] . (O Option 3
|E| H
o I
u

In the dialog shown above, items 5 and 6 are user items.
Item 5 has no procedure (it doesn’t draw at all), and
item 6 has the DrawltemBox procedure attached to it.
The right hand picture shows the results.

A user item procedure to draw a group frame in a
dialog.

pascal void Draw tenfFrane (
Di al ogPtr theDi al og,
short item);

This routine, when installed as a user item procedure,
draws a box from the middle of the previous item’s

rectangle to the bottom of item’s rectangle, with the
width of item’s rectangle. Typically, you use two user

Adobe Premiere Software Development Kit 22

SetCMax:

GetCMax:

SetCRef:

GetCRef:

The Utility Library

items to specify the frame where item - 1 is a statText
item (the group title), and item is a user item:

== DITL ID = 12 =

g uptiuns
3 Option 1 2] @option1
) Dption 2 [3] . () Option 2
() Option 3 [4] . (O Option 3
|E| H
ox 1T
B

In the dialog shown above, item 5 is a statText item
containing the group title “Options.” Item 6 has the
DrawltemFrame procedure attached to it. The right
hand picture shows the results. As you can see, the
DrawltemFrame procedure avoids drawing the frame
over the group title text.

Set the maximum value of a control in a dialog.

voi d Set Cvax (
Di al ogPtr theDi al og,
short item
short val ue);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls SetCtIMax to set that control’s
maximum value to value.

Get the maximum value of a control in a dialog.

short Get CMax (
Di al ogPtr thebD al og,
short item);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then returns GetCtiIMax for that control.

Set the refCon value of a control in a dialog.

voi d Set CRef (
Di al ogPtr thebD al og,
short item
| ong val ue);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls SetCRefCon to set that control’s
refCon to value.

Get the refCon value of a control in a dialog.

| ong Get CRef (
Di al ogPtr thebD al og,
short item);

Adobe Premiere Software Development Kit 23

SetCAction:

SetResCTitle:

OffsetCSize:

The Utility Library

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then returns GetCRefCon for that control.

Get the action procedure pointer of a control in a
dialog.

voi d Set CAction (
Di al ogPtr thebD al og,
short item
ProcPtr theProc);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls SetCtlAction to set the action
procedure for that control to theProc.

Important! On the PowerPC this function plays a key role.
When you use SetCAction to install an action procedure on
the PowerPC, SetCAction allocates an appropriate UPP and
passes it to the Control Manager. The Premiere DisposeModal
function iterates through the dialog’s control list and frees
these UPPs before disposing the dialog. For this reason it is
of utmost importance to use SetCAction to install control
action procedures in your dialogs. See also the functions
Userltem (above), and ShowModal and DisposeModal in the
Dialog Routines category of the Premiere Specific Routines
section in this chapter.

Get the title of a control in a dialog from a STR#
resource.

void SetResCTitle (
Di al ogPtr thebD al og,
short item
short reslD,
short strNum);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then retrieves a string number strNum from the
STR# resource with ID reslID. Finally, it calls SetCTitle to
set the title for that control to the retrieved string.

Add values to the size of an item in a dialog.

void O fsetCSize (
Di al ogPtr theDi al og,
short item
short h,
short v);

This routine gets the item handle for item number item
from dialog theDialog. It retrieves the dialog item
rectangle for the item, adds v to its bottom and h to its
right, then (for control-type items) calls SizeControl to
set the size of the control. Finally, it sets the dialog item
rectangle to the newly calculated rectangle. Normally
this routine is called for control-type items, but it works
for any dialog item.

Adobe Premiere Software Development Kit 24

OffsetControl:

DrawAControl:

SafeDrawControl:

SafeSetCValue:

The Utility Library

Move an item in a dialog by a relative amount.

void OfsetControl (
Di al ogPtr thebD al og,
short item
short h,
short v);

This routine gets the item handle for item number item
from dialog theDialog. It retrieves the dialog item
rectangle for the item and offsets it by v vertically and
h horizontally, then (for control-type items) calls
MoveControl to move the associated control. Finally, it
sets the dialog item rectangle to the newly calculated
rectangle. Normally this routine is called for control-
type items, but it works for any dialog item.

Draw a single control item in a dialog.

voi d DrawAControl (
Di al ogPtr theDi al og,
short item);

This routine gets the item handle for item number item
from dialog theDialog, which must be a control-type
item. It then calls Drawl1Control to redraw that control
without redrawing any other items in the dialog.

Draw part or all of a control item in a dialog safely.

voi d Saf eDrawControl (
Di al ogPtr thebD al og,
short item
short part);

This routine allows you to redraw one part (or an entire
control) safely from within a control’s action procedure.
SafeDrawControl retrieves the item handle for item
number item in dialog theDialog, which must be a
control-type item. It then redraws part code part, which
is one of the control’s part codes, or 0 for the entire
control. SafeDrawControl is normally called from
SafeSetCValue (described below), so normally you won’t
need to call it yourself.

Set the value of control item in a dialog safely.

voi d Saf eSet Cval ue (
Di al ogPtr theDi al og,
short item
short val ue);

This routine allows you to set the value of a control (and
thereby redraw all or part of it) safely from within a
control’s action procedure. SafeSetCValue retrieves the
item handle for item number item in dialog theDialog,
which must be a control-type item. It then pins your new
control value value within the minimum and maximum
values stored in the control and store the new value in
the control. Finally, it calls SafeDrawControl (described
above) to redraw then “inThumb” part of the control.
You would use this, for instance, in a Premiere filter
dialog where there are two sliders and one slider must
set the value of another slider.

Adobe Premiere Software Development Kit 25

The Utility Library

Window Routines

CenterWin2Win: Center one window over another window.

void Center Wn2Wn (
W ndowPt r noveW ndow,
W ndowPt r over W ndow) ;

This routine centers the window moveWindow over the
window overWindow. Normally this is called with (at
least) moveWindow hidden. CenterWin2Win is handy
when, for instance, you want an options dialog to be
visually associated with a specific window on the screen.

CenterWinOffset: Center a window within a specific global rectangle with
offsets.

void CenterWnO fset (
W ndowPt r t heW ndow,
Rect *box,
short h,
short v);

This routine centers the window theWindow within the
global-coordinate rectangle box, then offsets the
window’s position by h horizontally and v vertically.
Typically, box points to a copy of GDevice’s gdRect,
thereby centering a window in a given GDevice with
offset. If you don’t need the offsets, it’s more
convenient to use CenterWindow (see below). Note:
CenterWindOffset does not make a local copy of the
rectangle referred to by box, so don’t pass the address
of a gdRect directly inside a GDHandle, but instead copy
it to a local Rect first.

CenterWindow: Center a window within a specific global rectangle.

voi d Cent er Wndow (
W ndowPt r t heW ndow,
Rect *box);

This routine centers the window theWindow within the
global-coordinate rectangle box. Typically, box points
to a GDevice’s gdRect, thereby centering a window in a
given GDevice. CenterWindow immediately makes a
local copy of the rectangle referred to by box (which
allows you to pass in the address of an actual gdRect, as
shown below). CenterWindow notices if *box is exactly
equal to the main device’s gdRect. If so, it adjusts the
top by the height of the menu bar. Also, if theWindow
refers to a dialog (that is, if theWindow->windowKind
== dialogKind), it adds another 20 on to the top of box.
This is because modal dialogs in Premiere are exclusively
movable-modal. Here’s an example of how you might
use CenterWindow:

Adobe Premiere Software Development Kit 26

CenterWindowOnMain:

String Routines

Append:

StrCopy:

StringsSame:

The Utility Library

short DoMyDi al og (void)

{

Di al ogPtr nyDi al og;
Bool ean done = true;

/]l Get dialog froma tenplate that is set "not

/1 visible." Call CenterWndow to center the dialog

/1 on the main device.

nmyDi al og = Get NewDi al og(kMyDLOGQ D, ni |,
(WndowPtr)-1);

Cent er Wndow(nyDi al og, &(*CGet Mai nDevi ce())->gdRect);

Showibdal (nmyDi al og) ;

/1 Do all the rest of ny wi ndow stuff
do {

} vvhﬁe (!done);

D sposehMbdal (nyDi al og) ;

Center a window on the main screen.
voi d Cent er WndowOnMai n (W ndowPtr t heW ndow) ;

This routine centers the window theWindow on the
main screen. This call is equivalent to:

Cent er W ndow(t heW ndow, &(* Get Mai nDevi ce())->gdRect);

Append one Pascal string onto another
voi d Append (

StringPtr stri,
StringPtr str2);

This routine appends the Pascal string str2 onto the end
of Pascal string strl.

Append one Pascal string onto another
voi d Str Copy (

StringPtr src,
StringPtr dst);

This routine copies the Pascal string src to the
destination buffer dst.

Test whether two strings are byte-for-byte identical.

char StringsSane (

StringPtr str1l,
StringPtr str2);

This routine compares the byte values of every character
of Pascal string strl with those of Pascal string str2
including the length bytes. If any values don’t match,
StringsSame returns false. If they all match, StringsSame
returns true. This routine is not internationally
friendly—it is for testing that strings are identical.

Adobe Premiere Software Development Kit

27

TypeToStr:

FindIndString:

Graphics Routines

FrameErase:

SetGray:

SetBackGray:

The Utility Library

Returns a string from a longword integer constant.

void TypeToStr (

| ong type,
StringPtr str);

This routine sets the Pascal string referred to by strl to
a string made up of the four bytes in the longword
parameter type. For example, TypeToStr(*PrMr’, str) sets
the str to the four-byte Pascal string “PrMr”. TypeToStr
is convenient for turning OSTypes and ResTypes into
strings for display when necessary.

Find a given string in a STR# resource and return its
index.

short FindlndString (
StringPtr str,
short thelD);

This routine, given a pointer to a Pascal string str and
the resource ID of a STR# resource thelD, returns the
index into the STR# string list corresponding to str (1 to
n), or 0 if the string is not found. FindIndString uses
StringsSame for comparison, so the STR# string must
exactly match str to have its index returned.

Frame a rectangle then erase inside the frame.
voi d FraneErase (Rect *box);

This routine copies the rectangle referred to by box,
calls FrameRect on it, insets it by one pixel all around,
then calls EraseRect on the inset rectangle.

Set the color and/or pattern to a given white level value.
void Set G ay (unsigned short val ue);

This routine takes a white level value, where 0x0000 is
black and Oxffff is white.

SetGray behaves differently depending upon the depth
of the port you’re drawing into (according to the
function DepthOf described below). For ports = 4 bits-
per-pixel, SetGray does an RGBForeColor call with an
RGBColor that has all three channels set to value. For
ports < 4 bits-per-pixel, SetGray chooses from among
the standard QuickDraw patterns patBlack, patDkGray,
patGray, patLtGray, or if the value is close to white, then
SetGray sets the pattern to patBlack and does an
RGBForeColor with a white RGBColor. SetGray is a
convenient, pseudo-port-depth-independent way of
specifying a gray shade that is used extensively within
Premiere.

Set the color and/or pattern to a given white level value.
voi d Set BackGray (unsigned short val ue);

This routine makes an RGBColor that has all three
channels set to white level value. Regardless of port
depth, it then makes an RGBBackColor call to set the
background color the specified gray level.

Adobe Premiere Software Development Kit 28

SetColor:

SetBackColor:

SetColorFace:

The Utility Library

Set the color and/or pattern to given RGB values.

voi d Set Col or (
unsi gned short red,
unsi gned short green,
unsi gned short blue);

This routine takes three channel levels red, green, and
blue. SetColor behaves differently depending upon the
depth of the port you're drawing into (according to the
function DepthOf described below). For ports = 4 bits-
per-pixel, SetColor does an RGBForeColor call with an
RGBColor that has the channels set from the
parameters. For ports < 4 bits-per-pixel, SetColor acts
according to the following table:

Table 2-1: SetColor Actions

Red Green | Blue Action

0 Oxffff 0 green, so do a SetGray(Oxffff)
Oxffff 0 0 red, so do a SetGray(0)

Oxffff Oxffff 0 yellow, so do a SetGray(0x7fff)
Oxffff 0 Oxffff magenta, so do a SetGray (Ox7fff)

If the values don’t match any of the table entries, then
if any of the channels are > Ox7fff, it does a
SetGray(0Oxffff), otherwise a SetGray(0). The table
handles some special cases that Premiere needs to be
readable on black-and-white screens. More often than
not, you’ll be drawing to a color screen and your RGB
values will be used directly.

Set the background color to given RGB values.

voi d Set BackCol or (
unsi gned short red,
unsi gned short green,
unsi gned short blue);

This routine takes three channel levels red, green, and
blue. SetBackColor behaves differently depending upon
the depth of the port you’re drawing into (according to
the function DepthOf described below). For ports = 4
bits-per-pixel, SetColor does an RGBBackColor call with
an RGBColor that has the channels set from the
parameters. For ports < 4 bits-per-pixel, SetBackColor
looks for any channel value = 0x3000, then it sets the
background color to white, otherwise black.

Set the text face depending upon the depth of the port.
voi d Set Col or Face (short face);

This routine takes a text face face. If the depth of the
current port is = 4 bits-per-pixel, then SetColorFace
simply sets the text face to face with a TextFace call. If
the port is < 4 bits-per-pixel, it does a TextFace(bold)
and ignores face. You might use this routine instead of
TextFace in code that might end up drawing 9-point
Geneva on a 50% gray pattern. This routine will
substitute bold in that case, and then you’ll at least be
able to read the text in black-and-white.

Adobe Premiere Software Development Kit 29

EraseGrow:

DepthOf:

pt2GDevice:

pt2GDeviceRect:

VertCenter:

The Utility Library

Erase the grow box in a window.
voi d EraseG ow (W ndowPtr theW ndow);

This routine erases the grow box in the bottom right
corner of theWindow.

Makes an educated guess at the depth of a port.
short DepthOf (GrafPtr thePort);

This routine first checks if thePort is a old-style GrafPort.
If so, it returns 1 (meaning 1 bit-per-pixel). If thePort is
a CGrafPort, DepthOf returns the depth of the first
GDevice that intersects thePort.

Returns the GDevice on which a global point lies.

char pt2Qevice (
Poi nt t hePoi nt,
GDHandl e *t heDevi ce);

This routine returns, via the reference parameter
theDevice, the GDHandle of the device on which the
point thePoint (in global coordinates) lies, and returns
0. If thePoint lies on no device, then *theDevice is set to
nil and pt2GDevice returns 1.

Returns the rectangle of the GDevice on which a global
point lies.

char pt2CDevi ceRect (
Poi nt t hePoi nt,
Rect *theRect);

This routine returns, via the reference parameter
theRect, the gdRect of the GDevice on which the point
thePoint (in global coordinates) lies, and returns 0. If
thePoint lies on no device, then *theRect is left
untouched and pt2GDeviceRect returns 1. If the device
in question is the main device, the returned rectangle
already has the menu bar height removed from it.

Draw string vertically, centered in a rectangle.

void VertCenter (
char *str,
Rect *box,
short spacing);

This routine draws the given Pascal string str vertically
in the rectangle box. The spacing parameter allows the
caller to compress the characters vertically (if spacing is
>= -10, VertCenter uses spacing in place of the font’s
descent value when calculating character height). Each
character is centered, and the pen is moved vertically by
the font’s ascent plus the font’s descent, for each
character. The string is drawn using the current port’s
text settings. VertCenter works for both Roman and
Kanji text.

Adobe Premiere Software Development Kit 30

DrawSTRVert:

PinPt;

DrawSIC4:

DrawICL8:

The Utility Library

Draw string vertically, centered in a rectangle with
options.

voi d DrawSTRVert (
short reslD,
short strNum
Rect *box,
short font,
short size,
short spacing);

This routine retrieves a Pascal string from the STR#
resource with resource ID resID, string index strNum. It
then sets the font and size of the current port to font
and size, respectively. Finally, it draws the string
vertically in the rectangle box, using VertCenter
(described above). The spacing parameter is passed to
VertCenter. DrawSTRVert works for both Roman and
Kanji text.

Pin a point within a rectangle.

voi d PinPt (
Poi nt *where,
Rect *box);

This routine is just like the Macintosh Toolbox routine
PinRect (see IM-I p293) except for how it returns its
result. It pins the point referred to by where inside the
rectangle box, and returns its value via where.

Draw a ics4 icon with a specified destination and
transfer mode.

void Drawsl 4 (
short reslD,
Rect *box,
short node);

This routine loads the ics4 resource with ID resID and
draws it into the rectangle box in the current port. If the
depth of the current port is > 4 bits-per-pixel, then the
transfer mode mode is used, otherwise ditherCopy is
used instead. If box is less than 16-by-16 in size, then
only the needed top-left part of the ics4 is drawn (that
is, this routine will not scale the ics4 to fit box).

Draw a icl8 icon with a specified destination port and
rectangle.

void Drawl CL8 (
short reslD,
G af Ptr thePort,
Rect *box);

This routine loads the icl8 resource with ID resID and
draws it into the rectangle box in the port thePort. The
transfer occurs in srcCopy for destination ports of < 8
bits-per-pixel, and ditherCopy for others. If box is less
than 32-by-32 in size, then only the needed top-left part
of the icl8 is drawn (that is, this routine will not scale the
icl8 to fit box). It does the drawing with a call to
DrawICL8Hand, described below.

Adobe Premiere Software Development Kit 31

DrawICL8Hand:

DrawFulllICL8Hand:

SlotToGD:

SlotToRect:

PtClose:

HatchBox:

The Utility Library

Draw a ics4 icon from a handle with a specified
destination.

voi d Drawl CL8Hand (
Handl e t hei cl,
GafPtr thePort,
Rect *box);

This routine draws the icl8 stored in Handle theicl into
the rectangle box in the port thePort. The transfer
occurs in srcCopy for destination ports of < 8 bits-per-
pixel, and ditherCopy for others. If box is less than 32-
by-32 in size, then only the needed top-left part of the
icl8 is drawn (that is, this routine will not scale the icl8
to fit box).

Scales an ics4 icon into a specified destination.

voi d DrawFul | | CL8Hand (
Handl e t hei cl,
GafPtr thePort,
Rect *box);

This routine draws the entire 32-by-32 icl8 stored in
Handle theicl into the rectangle box in the port thePort
scaling if necessary. The transfer occurs in srcCopy for
destination ports of < 8 bits-per-pixel, and ditherCopy
for others.

Returns the GDevice handle associated with a given slot.
GDHandl e Sl ot ToGD (short slot s);

This routine returns the GDevice handle corresponding
to a given slot number. If there is no corresponding
GDevice, (because the slot number is out of range or
there’s no video card in the slot), then SIotToGD returns
nil.

Returns the gdRect of the GDevice for a given slot.

voi d Sl ot ToRect (
short sl ot,
Rect *box);

This routine returns the gdRect of the GDevice
corresponding to a given slot number, via the reference
parameter box. If there is no corresponding GDevice,
(because the slot number is out of range or there’s no
video card in the slot), then SlotToRect returns an empty
rectangle.

Returns true if two points are “close” to each other.

char PtC ose (
Poi nt pt 1,
Point pt2);

This routine returns true if ptl is within 2 pixels of pt2
both horizontally and vertically, in either direction.

Draws a hatch pattern in a given rectangle.
voi d Hat chBox (Rect *box);

Adobe Premiere Software Development Kit 32

GetArrow:

EqualColor:

EqualColor8:

The Utility Library

This routine paints a crosshatch pattern in the given
rectangle box, using whatever is the current transfer
mode. Afterwards, it does a PenNormal() call. This
routine can give many different hatching effects by
using different transfer modes.

Returns a pointer to the standard QuickDraw arrow
cursor.

CursPtr GetArrow (void);

This routine returns a pointer to the standard
QuickDraw arrow cursor, that is, &qd.arrow.

Returns true if two RGB colors are identical.

Bool ean Equal Col or (
RGBCol or *col or1,
RGBCol or *color2);

This routine returns true if the color pointed to by
colorl is exactly identical to the color pointed to by
color2, otherwise it returns false.

Returns true if two 8-bit RGB colors are identical.

Bool ean Equal Col or 8 (
Col or8 *col or1,
Col or8 *color2);

This routine returns true if the 8-bit color pointed to by
colorl is exactly identical to the 8-bit color pointed to by
color2, otherwise it returns false.

List Manager Lists Routines

FindSelect:

SetSelect:

WhichCell:

Find the cell index of the first selected cell in a list.
short Fi ndSel ect (ListHandl e thelList);

This routine returns the index of the first selected cell in
the list theList. If no cell is selected, FindSelect returns -
1. FindSelect is designed for n-row, 1-column lists with

only one selected cell at a time.

Select a given cell in a list, deselecting all others.

voi d Set Sel ect (
Li st Handl e t helLi st,
short item);

This routine selects the cell with index item in the list
thelList, and deselects all other cells. If item is beyond
the bounds of the list, no cell is selected. SetSelect is
designed for n-row, 1-column lists with only one
selected cell at a time.

Tells which cell a given point is over.

char Wi chCel I (
Poi nt where,
Cel I *whichcel I,
Li stHandl e thelist);

Adobe Premiere Software Development Kit 33

Data Lists Routines

DatalLookup:

ReverseLookup:

The Utility Library

This routine determines which cell of list thelist the
point where is over. If where is over some cell, the cell is
returned via the reference parameter whichcell and the
function returns true. If where is not over any cell, the
function returns false.

Return an indexed short from an array stored in a List
resource.

short DataLookup (
short reslD,
short item);

This routine returns the value of the short at index item
in the array of shorts stored in a resource of type List
with the resource ID resID. If there are n shorts in the
List resource, then item’s range is from 0..n-1. This
routine, in conjunction with ReverseLookup (described
below), is a handy way to associate parallel lists of
values, as in the example below:

Menu List Resource
Item#
= 19 ik ¥
Black and White | 1 wa e]
IR L
! R
16 o W
SO I Y Ca—
250 $1 bbb
O I U CH—
+ Thousands 53 #hbe
T 5 | e
Millions 6 ::I::m
Th b D &

pixel Dept h = Dat aLookup(128, itemNum - 1);

Given a value from a List resource, return the associated
index.

short ReverseLookup (
short reslD,
short val ue);

This routine returns the index of the short value value in
the array of shorts stored in a resource of type List with
the resource ID resID. If value is found in the specified
List resource, the index (0..n-1) is returned. If value is
not found, ReverseLookup returns -1. This routine, in
conjunction with DataLookup (described below), is a
handy way to associate parallel lists of values, as in the
example below:

Adobe Premiere Software Development Kit 34

DeleteHandltem:

InsertHandltem:

File Routines

DirIDFromPath:

The Utility Library

Menu List Resource
Item#
H 13 b
Black and White | 1 balue]
FER L L
N N S Cl—
lﬁ i diehieh
3| wwe
2560 i b
N IO Co—
+ Thousands E) #i
r 5 | e
Millions 6 ::I::...
T d D EI

checkedlt emNum =
Rever seLookup(128, pixelDepth) + 1;

Delete an item from a list of fixed-sized items stored in
a Handle.

voi d Del eteHandl tem (
short whi ch,
voi d *dat a,
short dataSize);

This routine deletes a single fixed-size item from a list of
items stored in a Handle. DeleteHandItem deletes item
number which (in the range 0..n-1) from the list stored
in handle data, given the item size in bytes dataSize.
DeleteHandltem, in conjunction with InsertHandltem
(described below) provide an easy way to manage lists
of records stored in handles. Note that while h is
declared as a void pointer it must be a handle.

Insert an item into a list of fixed-sized items stored in a
Handle.

voi d I nsertHandltem (
short whi ch,
voi d *dat a,
short dat aSi ze,
void *item);

This routine inserts a single fixed-size item into a list of
items stored in a Handle at a given position.
InsertHandlItem inserts the item item the list stored in
handle data, such that its item number in the list is
which (in the range 0..n-1). The item size in bytes is
given by dataSize. If which is 0, data is inserted at the
beginning of the list. If which is >= n, data is stored at
the end of the list. Using 32767 always adds to the end
of the list. InsertHandItem, in conjunction with
DeleteHandItem (described above) provide an easy way
to manage lists of records stored in handles. Note that
while h is declared as a void pointer it must be a handle.

Translate a full path into a directory ID and a volume
refNum.

short Dirl DFronPat h (
StringPtr path,
long *dirlD,
short *vRef Num);

Adobe Premiere Software Development Kit 35

PathFromDirID:

CountVolumes:

GetIindVolume:

GetVolindex:

Menu Routines

WidenMenu2Box:

The Utility Library

This routine converts a full text path into a dirlD and
vRefNum. The full text path stored in Pascal string path
is translated into a directory ID and a volume reference
number via the reference parameters dirlD and
vRefNum, respectively. DirIDFromPath returns an OSErr.

Translate a directory ID and a volume refNum into a full
path.

short PathFromDirI D (
l ong dirl D,
short vRef Num
StringPtr path);

This routine converts a dirlID and vRefNum into a full
text path. The directory ID dirID and the volume
reference number vRefNum are translated into a full
path which is stored as a Pascal string in the buffer
pointed to by path. PathFromDirID returns an OSErr.

Returns the number of currently mounted volumes.
short Count Vol unes (void);

This routine returns the number of currently mounted
volumes. Use this routine in conjunction with
GetIndVolume (described below) to iterate through
volumes.

Returns and indexed volume reference number.
short GetlndVol une (short which);

This routine returns the volume reference number of
the volume index which (ranging from
1..CountVolumes()). Use this routine in conjunction with
CountVolumes to iterate through the mounted volumes.

Returns the volume index for a given volume reference
number.

short Get Vol I ndex (
short ref,
short count);

This routine returns the volume index, maximum count,
associated with the volume reference number ref. Use
this routine in conjunction with CountVolumes and
GetindVolume.

Widen the first item of a menu to fit a particular box.

voi d W denMenu2Box (
MenuHandl e t heMenu,
Rect *box);

This routine widens the first item of the popup menu
stored in theMenu such that it is as wide as the rectangle
box, leaving room for various popup adornments.
Premiere’s popup CDEF uses this routine at CDEF init
time to widen the menu to fit the control rectangle.

Adobe Premiere Software Development Kit 36

WidenMenu:

GetMenuWidth:

Math Routines

LimitLong:

QuickAbs:

FixMulDiv:

FixedDiv:

The Utility Library

Normally it is called by WidenMenu (described below),
SO you probably won’t need to call it yourself.

Widen the first item of a popup menu to fit its dialog
item.

voi d WdenMenu (
D al ogPtr theD al og,
short item);

This routine widens the first item of menu associated
with item number item in dialog theDialog (which must
be a Premiere popup CDEF control item) such that the
menu fully occupies the width of the dialog item. Use
this routine if, in the course of conducting a dialog, you
change or rebuild a popup menu.

Widen the first item of a popup menu to fit its dialog
item.

short Get MenuW dth (MenuHandl e t heMenu);

This routine returns the width of the widest menu item
text in the menu theMenu plus 28 to compensate for the
width of a popup arrow.

Limit a long coordinate to -16,384 to 16,383.
short LimtLong (long num;

This routine limits num to within a 32,768-pixel range
centered about zero. Premiere uses this to avoid trying
to draw lines with lengths greater than 32,768 pixels
(which, because of integer overflow, don’t draw). You
can use it in a similar fashion.

Return the absolute value of a long integer.
| ong Qui ckAbs (long val);
This routine returns the absolute value of val.

Calculates a * b/ cin 16.16 fixed-point with an
intermediate 32.32 value.

Fi xed FixMul Div (
Fi xed val ue,
| ong mul,
long div);

This routine calculates value * mul / div in 16.16 fixed-
point. During the calculation an intermediate value of
32.32 precision is kept to prevent overflow.

Calculates a 16.16 fixed-point division quickly.

Fi xed Fi xedDi v (
Fi xed val ue,
Fixed div);

This routine returns value / div quickly in 16.16 fixed-
point format.

Adobe Premiere Software Development Kit 37

inttox80:

longdoubletox80:

x80tolongdouble:

x80toint;

pie:

The Utility Library

Converts an int to an extended80 floating point value.
ext ended80 i nttox80 (|l ong val ue);

This routine converts the long value to and extended80
floating point type.

Converts a long double (aka “extended”) to an
extended80 floating point value.

ext ended80 | ongdoubl et 0x80 (| ong doubl e val ue);

This routine converts the long double (“extended™)
value to and extended80 floating point type.

Converts an extended80 floating point value to a long
double.

| ong doubl e x80t ol ongdoubl e (ext ended80 val ue);

This routine converts the extended80 floating point
value to an long double.

Converts an extended80 floating point value to an int.
| ong x80toint (extended80 val ue);

This routine converts the extended80 floating point
value to an int (truncating).

Returns mmas a long double.
| ong double pie (void);

This routine returns the constant 1m(3.1415926...) as a
long double floating point value. This function is
provided because the 68K headers define pi as a
constant and the PowerPC headers define pi() as a
function, which makes source compatibility a problem.
Just use pie() instead.

Premiere-Specific Routines

Interface Compatibility Routines

These routines make coding plug-ins for the Premiere on the PowerPC easier
by providing glue routines between your code and some Toolbox, OS, and
QuickTime routines that use callbacks. For example, instead of calling
ModalDialog, call PrModalDialog with the address of your filter procedure as
you’re used to, and the filter proc UPP is handled automatically. On the 68K
these routines simply call through to their Toolbox, OS, or QuickTime

counterparts.

PrModalDialog:

Premiere glue for ModalDialog.

voi d PrModal Di al og (
Modal FilterProcPtr filterProc,
short *itenHit);

This routine is just like ModalDialog but on the PowerPC
handles the temporary creation and disposal of an
appropriate UPP for the filterProc parameter.

Adobe Premiere Software Development Kit 38

PrCustomGetFile:

PrCustomPutFile:

PrCustomGetFilePreview:

The Utility Library

Premiere glue for CustomGetFile.

pascal void PrCustonGetFile (
FileFilterYDProcPtr fileFilter,
short nunTypes,
SFTypelLi st typelLi st,
St andar dFi | eReply *reply,
short dl gl D,
Poi nt where,
Dl gHookYDPr ocPt r dl gHook,
Modal Fil terYDProcPtr filterProc,
short *activeli st,
Activat eYDProcPtr activateProc,
voi d *yourDataPtr);

This routine is just like CustomGetFile but on the
PowerPC handles the temporary creation and disposal of
appropriate UPPs for the fileFilter, dlgHook, filterProc,
and activateProc parameters.

Premiere glue for CustomPutFile.

pascal void PrCustonPutFile (
Const St r 255Par am pr onpt
Const St r 255Par am def aul t Nane,
St andar dFi | eReply *reply,
short dl gl D,
Poi nt where,
Dl gHookYDPr ocPt r dl gHook,
Modal Fil ter YDProcPtr filterProc,
short *activeli st,
Acti vateYDProcPtr acti vateProc,
voi d *yourDataPtr);

This routine is just like CustomPutFile but on the
PowerPC handles the temporary creation and disposal of
appropriate UPPs for the dlgHook, filterProc, and
activateProc parameters.

Premiere glue for CustomGetFilePreview.

pascal void PrCustontetFil ePreview (
FileFilterYDProcPtr fileFilter,
short nunTypes,
SFTypelLi st typelLi st,
St andar dFi | eReply *reply,
short dl gl D,
Poi nt wher e,
DI gHookYDPr ocPt r dl gHook,
Modal Fi |l ter YDProcPtr filterProc,
short *acti veli st,
Activat eYDProcPtr activateProc,
voi d *yourDataPtr);

This routine is just like CustomGetFilePreview but on the
PowerPC handles the temporary creation and disposal of
appropriate UPPs for the fileFilter, digHook, filterProc,
and activateProc parameters.

Adobe Premiere Software Development Kit 39

PrSCSetinfo:

PrSGSettingsDialog:

PrTrackControl:

PrSndNewChannel:

PrSndDisposeChannel:

The Utility Library

Premiere glue for SCSetinfo.

pascal Conponent Result PrSCSetl|nfo (
Conponent | nst ance ci,
CSType type,
SCMbdal FilterProcPtr schModal Filter,
SCMbdal HookPr ocPtr schMbdal Hook,
| ong ref Con,
StringPtr customNane);

This routine is just like SCSetinfo but on the PowerPC
handles the temporary creation and disposal of
appropriate UPPs for the scModalFilter and
scModalHook parameters.

Premiere glue for SGSettingsDialog.

pascal Conponent Result PrSGSettingsD al og (
SeqG abConponent s,
SCChannel c,
short nunPanel s,
Conmponent *panel Li st
| ong fl ags,
SGwbdal Fil terProcPtr proc,
| ong procRef Num);

This routine is just like SCSetinfo but on the PowerPC
handles the temporary creation and disposal of an
appropriate UPP for the proc parameter.

Premiere glue for TrackControl.

pascal short PrTrackControl (
Cont r ol Handl e t heContr ol ,
Poi nt t hePoi nt,
ProcPtr actionProc);

This routine is just like TrackControl but on the PowerPC
handles the temporary creation and disposal of an
appropriate UPP for the actionProc parameter.

Premiere glue for SndNewChannel.

pascal OSErr PrSndNewChannel (
SndChannel Ptr *chan,
short synth,
long init,
SndCal | BackProcPtr userRoutine);

This routine is just like TrackControl but on the PowerPC
handles the creation of an appropriate UPP for the
userRoutine parameter.

Important! If you use the routine, be sure to dispose the
channel with PrSndDisposeChannel, otherwise the UPP will
not be deallocated.

Premiere glue for SndDisposeChannel.

pascal OSErr PrSndD sposeChannel (
SndChannel Ptr chan,
Bool ean qui et Now) ;

Adobe Premiere Software Development Kit 40

The Utility Library

This routine is just like SndDisposeChannel but on the
PowerPC handles the disposal of the UPP for the
callback procedure.

Important! Only use this routine to dispose a sound channel
you created with PrSndNewChannel.

Global Accessor Routines

GetAGlobal:

SetAGlobal:

Get the value of a Premiere global variable.
pascal |ong Get Ad obal (long identifier);

This routine returns the value of the global variable
specified symbolically by identifier. The global
identifiers are provided in the Premiere headers.
Specific useful globals are documented in detail in the
Globals chapter.

Important! Do not attempt to use the values of global
variables that are not specifically documented in the Globals
chapter.

Set the value of a Premiere global variable.

pascal void Set Ad obal (
long identifier,
| ong val ue);

This routine sets the value of the global variable
specified symbolically by identifier to the value value.
The global identifiers are provided in the Premiere
headers. Specific useful globals are documented in
detail in the Globals chapter.

Important! Do not change the values of Premiere globals
that are not specifically documented in the Globals
chapter—stability will be compromised.

Text, Strings, and Memory Routines

BuildString:

Expand text from a ‘TEXT’ resource with parameter
replacement.

Handl e Buil dString (

short whi ch,

short listlD,

| ong val uel,

)

This routine returns a handle containing the text from
the ‘TEXT’ resource with ID which using expansion
values valuel, etc. BuildString works somewhat like the
way ParamText strings are substituted in a dialog or
alert. The parameter listID gives the resource ID of the
string list from which BuildString will retrieve strings for
‘&N’ expansion identifiers, or, in the case of ‘}n’ and
‘%n’ identifiers, the time code format (see the list of
formats below). The n in the identifiers determines
which function parameter should be used to substitute
for the identifier. They are specified by number so that
the parameters may be reordered for international
localization without changing the code. Your TEXT
resource may contain the following expansion

Adobe Premiere Software Development Kit 41

The Utility Library

identifiers:

Table 0-2: BuildString Identifiers

Identifier | Parameter | Description

~n long Replace with ASCII decimal value of
parameter n.

AN none Replace with single “~”” character.

%n long Replace with ASCII timecode value of
parameter n, showing hours.

%% none Replace with single “%” character.

n long Replace with ASCII timecode value of
parameter n.

B none Replace with single “}” character.

/n char * Replace with Pascal string pointed to
by parameter n.

I none Replace with single ‘/’ character.

&n long Replace with string number given by
parameter n from STR#.

&& none Replace with single ‘&’ character.

{n long Replace with ASCII byte quantity of

parameter n (use K, M).

{q none Replace with single ‘{’ character.

When using a ‘%n’ or ‘}n’ identifier, the listiD is
interpreted as having one of the values from the first
part of the list, with some of the values from the second
part of the list possibly ORed over it to specify the time
code format. The constants shown below are not
included in the Premiere header files that come with the
basic Plug-in Developer’s kit, but you can type them in
and use them.

enum {
ff FranmeCount = 1, /1 count in frames FFFFF
ff NonDr op24 = 24, [l 24f ps HH. MMt SS: FF
ff NonDr op25 = 25, /1 25fps HH. MM SS: FF
ff NonDr op30 = 30, /1 30f ps, non-drop
HH: MM SS: FF
ff NonDr op100 = 100, /1 100f ps HH: MM SS: FFF
f f NonDr op600 = 600, /1 600f ps HH: MM SS: FFF
ffDropFrame = 29, /1 30fps, drop-frane
HH, MM SS; FF
ff Feet Framel6é = 16, /1 Feet.Franes (35m) ffff.FF
ff Feet Frame40 = 40, /1 Feet.Franes (16m) ffff.FF
ffDelta = 0x4000, /1 delta synbol in front of
time

ff TensHours = 0x3000, // show tens of hours

ff TensFl ag = 0x2000, /1 test bit for tens of hours
ffHours = 0x1000, /1 show hours

ffOfset = 0x0800 /1 +SS:. FF or -SS:.FF

b
Here’s an example. For the following TEXT resource:

resource ' TEXT' (10000, "BuildString exanmple 1") {
"There are ~0 /1s at tinme %, (yes, ~0)."

b

Adobe Premiere Software Development Kit 42

StringTrunc:

The Utility Library

And the following code:

{
Handl e h;
h = Buil dString(10000, ffNonDrop30 | ffHours, 10,
"\ pwi dget", 45);
DrawText (*h, 0, GetHandl eSi ze(h));
Di sposeHandl e(h);
}

Would display the following output:
There are 10 widgets at tinme 0:00:01:15, (yes, 10).

Note that because the identifiers tell which parameter
they get their value from, the 20 at the end of the TEXT
resource references the first parameter again. Also,
since we used a time-code identifier in our TEXT
resource (%2), we had to specify the time code format
in the listID parameter. This means that you cannot mix
‘&n’ identifiers with ‘}n’ and ‘%n’ identifiers in the same
template.

Here’s an example of how to use the string lookup
feature. For the following TEXT resource and STR#
resource:

resource ' TEXT' (10001, "BuildString exanple 2") {

"Word #70: &0.
b
resource ' STR#' (10001, "BuildString exanmple 2") {
" CGood",
"Better",
"Best",
b

And the following code:

{
short i;
Handl e h;
for (i =1; i <=3; i++) {
h = BuildString(10001, 10001, i);
DrawText (*h, 0, CGetHandl eSi ze(h));
Di sposeHandl e(h);

}

Would display the following output:
Wrd #1: Good. Word #2: Better. Wrd #3 Best.

Here the TEXT template used the i parameter twice, the
second time using it as the index into the STR# resource
that we specified in the listID parameter of BuildString.

Copies a string then truncates it to a particular screen
width.

void StringTrunc (
StringPtr instr,
StringPtr outstr,
short width);

This routine first copies instr to outstr then truncates
the string at the end so that it will fit in width pixels on
the screen at the current port’s font, size, and style. The

Adobe Premiere Software Development Kit 43

TruncLength:

NumToQuan:

ExtraNewHandle:

Clip Routines

The Utility Library

truncation is done in an internationally compatible way
(that is, with the Script Manager TruncString routine).

Truncates a string in place to be no more than a certain
number of bytes.

voi d TruncLength (
StringPtr instr,
short width);

This routine truncates (by changing the length byte) the
string instr to be no longer than width bytes. It is smart
enough to not chop a two-byte character in half.

Converts a memory- or disk-size quantity to an ASCII
representation.

voi d NumloQuan (
| ong num
StringPtr str);

This routine converts num, which is assumed to be a size
in bytes, into a string with the usual abbreviations (K or
M). It stores the text representation in the buffer
pointed to by str. Here are some examples:

Value Output
512 512
753049 735.3K
3672415 3.5M

Try to allocate a handle in temp memory, then in local
heap.

Handl e ExtraNewHandl e (1 ong size);

This routine is like NewHandle except that it tries to
allocate a handle of size size from temporary
(MultiFinder) memory first. If that fails, it tries again in
the local heap. If both tries fail ExtraNewHandle returns
nil—check MemeError() for the error code.

The routines in this category are used to get information about clips in
Premiere. These routines will be of most use in Export (‘ExpD’) modules, but
can be used in other types of plug-ins as well. For more information on clips
in Premiere see the section Premiere Terminology in the Introduction.

ClipStart:

ClipRate:

Returns the in-point for a click for a given frame rate.

long AdipStart (
short cliplD,
short fps);

This routine returns the in-point for the clip specified by
cliplD at the frame rate fps.

Returns the playback rate (speed) for a clip.
short dipRate (short cliplD);

Adobe Premiere Software Development Kit 44

GetClipTitle:

ClipFile:

ClipSize:

Clipwidth:

ClipAspect:

The Utility Library

This routine returns the playback rate (speed) for the
clip specified by clipIlD. Normal playback speed is 100.
Note that ClipRate may return a negative value if the
speed is negative (backwards).

Returns the title for a clip that appears in the Project
window.

void GetlipTitle (
short cliplD,
StringPtr str,
char *alias);

This routine returns the title for the clip specified by
clipID into the buffer str. If the clip’s name has been
changed by the user with the Name Alias command, the
char pointed to by alias will be set to non-zero,
otherwise zero.

Returns the file ID of the file associated with a clip.
short dipFile (short cliplD);

This routine returns the file ID associated with the clip
specified by cliplD. Note that this is a Premiere file ID,
not a file system reference number. Once you have the
file ID for a clip, you can use GetFSSpec to get the
complete file specification for the file. See GetFSSpec in
the File category of this section.

Returns the total media length of a clip in frames at a
given frame rate.

long AipSize (
short cliplD,
short fps);

This routine returns the total media length (ignoring
the in-point and out-point) for the clip specified by
clipID at the frame rate fps. To get the length in frames
between the in-point and the out-point, use ClipWidth,
documented below.

Returns the length from in- to out-point of a clip in
frames at a given frame rate.

long AipWdth (
short clipl D,
short fps);

This routine returns the length in frames between the
in-point and the out-point for the clip specified by clipID
at the frame rate fps. To get the total media length
(ignoring the in-point and out-point), use ClipSize,
documented above.

Returns the state of a clip’s “maintain aspect™ attribute.
short d i pAspect (short cliplD);

This routine returns the state of the “maintain aspect
ratio” attribute of the clip specified by clipID. Non-zero
says to maintain the aspect ratio, zero indicates not.

Adobe Premiere Software Development Kit 45

GetClipBackwards:

CountClipMarkers:

GetClipMarker:

FindClipMarker:

PreviousClipMarker:

NextClipMarker:

The Utility Library

Returns the state of a clip’s “backwards” attribute.
short Getd i pBackwards (short cliplD);

This routine returns the state of the “backwards”
attribute of the clip specified by clipIlD. Non-zero means
the clip is to play backwards, zero indicates not.

Returns the number of markers for a clip.
short Countd i pMarkers (short cliplD);

This routine returns the number of markers for the clip
specified by cliplD, which will always be at least 12.

Returns the location in frames of a given marker at a
specified frame rate.

| ong Getd i pMarker (
short cliplD,
short marker,
short fps);

This routine returns the location of the marker with
index marker in the clip specified by clipID at the frame
rate fps. The returned value is in frames at fps. The
marker parameter ranges from 0 to CountClipMarkers()
- 1. Marker 0 is the in-point, marker 1 is the out-point,
markers 2-11 are the numbered markers 0-9, and
markers with an index > 11 are unnumbered markers.
See also CountClipMarkers, FindClipMarker,
PreviousClipMarker, and NextClipMarker below.

Returns the number of the marker at a specific time, if
any.

short Fi ndd i pMarker (
short cliplD,
| ong val ue,
short fps);

This routine returns the number of the marker in the clip
specified by clipID that is exactly at the frame value at
the frame rate fps. If no such marker exists,
FindClipMarker returns -1.

Returns the first marker to the left of the given frame
for a clip.

short PreviousC i pMarker (
short cliplD,
| ong val ue,
short fps);

This routine returns the number of the marker in the clip
specified by clipID that to the left (that is, earlier in
time) of the frame value at frame rate fps. If there is no
previous marker, PreviousClipMarker returns -1.

Returns the first marker to the right of the given frame
for a clip.

short Nextd i pMarker (
short cliplD,
| ong val ue,
short fps);

Adobe Premiere Software Development Kit 46

File Routines

The Utility Library

This routine returns the number of the marker in the clip
specified by clipID that to the right (that is, later in time)
of the frame value at frame rate fps. If there is no next
marker, NextClipMarker returns -1.

The routines in this category are used to get information about files in
Premiere. These routines will be of most use in Export (‘ExpD’) modules, but
can be used in other types of plug-ins as well. For more information on files
in Premiere see the section Premiere Terminology in the Introduction.

GetFSSpec:

FindFType:

exists:

SuperfFilelnit:

Get the FSSpec corresponding to a Premiere file ID.

voi d Get FSSpec (
short filelD,
FSSpec *thespec);

This routine returns via reference parameter thespec a
Macintosh FSSpec for the file specified by the Premiere
file ID fileID. You can use this information to access the
file directly if you wish.

Find the file type for a given file.

short Fi ndFType (
StringPtr nane,
l ong dirl D,
short vRef Num
| ong *ftype);

This routine returns via reference parameter ftype the
type of the file specified by name, dirID, and vRefNum.
The GetFSSpec routine returns the result of its internal
HGetInfo call as the function result.

Tells whether a particular disk file exists.

char exists (
StringPtr nane,
short vrefnum
long dirlD);

This routine returns true if the file specified by name,
vrefnum and dirID exists, false if not.

Initialize a SuperFileRec for buffered file reads.

OSErr SuperFilelnit (
short ref,
| ong bufferSize,
SuperFil ePtr superData);

This routine is the first of four routines that make up a
buffered file reader, which allows high speed read
access to a file, even if only small numbers of bytes are
read at a time. SuperFilelnitinitializes a SuperFileRec for
buffered file reads.

Important! The ref parameter is the Macintosh file reference
number of an already open-for-reading file. The
bufferSize parameter is the chunk size you’d like the
SuperFile package to read when it has to actually read from
the file—32768 is a good choice. The superData parameter
is a pointer to the SuperFileRec you’re initializing. The

Adobe Premiere Software Development Kit 47

The Utility Library

SuperFile package will use this record for state information.
SuperFilelnit may return paramekrr if ref or superData is nil,
or memFullErr if it was unable to allocate its internal file
buffer.

Following is an example of how you might use the
SuperFile package (using all four SuperFile routines).
The example is a reader for an imaginary data file that
has a 512 byte reserved section at the beginning, a 512-
entry interleaved list containing a 256-byte string
followed by a 26-byte record, a 1024-byte reserved area,
and a 256K image. Given three pre-allocated pointers,
the following routine will unroll the interleaved file list
into two pointers, one for the strings and another for
the 26-byte records, skip the reserved area, and read the
image at the end.

OSErr MyFil eReader (Ptr destl, Ptr dest2, Ptr dest3,
FSSpec *nySpec)

{
SuperFil eRec sf; [//The SuperFile state information
| ong count; /1 The byte count for SuperFil eRead
| ong pos; /1 File position for SuperFil eSeek
OSErr err = noErr;//Error code fromvarious calls
short ref; /1 The Mac ref Num of the data file
short i; /1 The iterator for reading our list

Bool ean fileQOpen; //Tells if we’ve opened the file
Bool ean superFileUp;//Tells if we’ve done a
/1 SuperFilelnit

/1 First, try to open the file.
fileOpen = superFileUp = fal se;
err = FSpOpenDF(nySpec, fsRdPerm &ref);

/1 Skip the reserved 512 bytes at the beginning ny
/] data file.
if (err == noErr)
{
fileQpen = true;
err = SetFPos(ref, fsFronttart, 512);

}

/'l Fire up a SuperFile starting right here.
if (err == noErr)

{

superFil eUp = true;
err = SuperFilelnit(ref, 32768, &sf);

/'l Read the interleaved 512-entry list out of ny data
/'l file into the two array pointers destl and dest 2.
if (err == noErr)

for (i =0; i <512 & err == noErr; i++)
{
/'l Read the string into destl
count = 256;
err = SuperFil eRead(&sf, &count, destl);
dest1l += 256;

/1l Read the MyListRec record into dest2
if (err == noErr)

{

count = sizeof (M/Li st Rec);
err = SuperFil eRead(&sf, &count, dest?2);
dest 2 += si zeof (MyLi st Rec);

}

/1 Skip the 1K reserved area that follows the list.

Adobe Premiere Software Development Kit 48

SuperFileRead:

SuperFileSeek:

The Utility Library

if (err == noErr)

pos 512 + (512 * (256 + sizeof (MyListRec)))
+ 1024;

Super Fi | eSeek(&sf, pos);

err

/'l Read the big image at the end of the file
/'l into dest3.
if (err == noErr)

count = 256 * 1024,
err = SuperFil eRead(&sf, &count, dest3);

}

/| Dispose the SuperFile private storage and cl ose
Il the file
i f (superFileUp)

Super Fi | eDi spose(&sf);

if (fileQOpen)
FSC ose(ref);

return(err);

Read some bytes from a SuperFile.

OSErr SuperFil eRead (
Super Fi | ePtr superDat a,
| ong *user Count,

Ptr outBuf);

This routine is like FSRead, except that it reads data
from a SuperFile that has been previously initialized
with SuperFilelnit. The superData parameter is a pointer
to an initialized SuperFileRec. The userCount parameter
points to a long that specifies the number of bytes to
read. Also, the actual number of bytes transferred is
returned via the reference parameter userCount. The
outBuf parameter is the buffer into which the bytes are
transferred. SuperFileRead is very efficient even if the
number of bytes requested is small—the file is buffered
by the SuperFile package. SuperFileRead will return the
results of FSRead calls, but remember—the point of the
SuperFile package is to do large FSReads and buffer the
data, so there probably won’t be an FSRead call every
time you call SuperFileRead.

Important! SuperFileRead does not consider an eofErr from
the file system to be an error. SuperFileRead will never
return eofErr, so if you don’t already know how much data
is in the file, you’ll have to check for end-of-file yourself. See
the example in the description of SuperFilelnit for more
information.

Seek a SuperFile to a particular location.

OSErr SuperFil eSeek (
Super Fi | ePtr superDat a,
| ong position);

This routine seeks the SuperFile represented by the
SuperFileRec pointed to by superData to the position
position, in bytes, from the beginning of the file.

Important! The SuperFile package is most efficient when it
is used to read linearly—seeking may reduce SuperFile
performance. See the example in the description of

Adobe Premiere Software Development Kit 49

SuperFileDispose:

SafeSetupAlFFHeader:

The Utility Library

SuperFilelnit for more information.

Dispose a SuperFile’s private storage.

CSErr Super Fi | eDi spose (
SuperFil ePtr superData);

This routine disposes the private storage allocated by
the SuperFile package at SuperFilelnit time.

Important! SuperFileDispose does not close the file. See the
example in the description of SuperFilelnit for more
information.

Bug-free version of SetupAlFFHeader.

short Saf eSet upAl FFHeader (
short ref,
short channel s,
unsi gned | ong speed,
short bits,
| ong conpression,
| ong nunByt es,
| ong nunfranes);

This routine is just like SetupAlFFHeader except that it
properly handles sample rates over 32767.0. The ref
parameter is the Macintosh file reference number of the
file to which you’re writing. The speed parameter is an
unsigned Fixed number in 16.16 format, bits is the
number of bits per sample, compression is the
compression type which in SafeSetupAlFFHeader is
ignored. The numBytes parameter is the sound data
chunk data length, and the numFrames parameter is
ignored by SafeSetupAlFFHeader (instead, the number
of sample frames is calculated using the formula
numBytes * (bits / 8)).

Debugging Routines

PrDebug:

Send a formatted string to the Premiere Debug window.

voi d PrDebug (

short panel,

char *str,

)

This routine allows you to easily send debugging
information to Premiere’s Debug window, which is built
into every version of Premiere. To display the debug
window, hold Control and Option and press “0” (zero).
The panel parameter is O for the top (large) part of the
window, or 1 for the smaller lower panel. The str
parameter is a formatting string similar to printf, and

Adobe Premiere Software Development Kit 50

The Utility Library

the values for the identifiers follow str. The table below
shows the valid identifiers and what they display.

Table 0-3: PrDebug Identifiers

Identifier Parameter | Description

%d long Replace with ASCII decimal value of
parameter.

%f Fixed Replace with ASCII decimal fixed-
point value of parameter.

%S StringPtr Replace with Pascal string pointed
to by parameter.

%t OSType Replace with four-character OSType
parameter.

%r Rect * Replace with text representation of

Rect pointed to by parameter.

%p Point * Replace with text representation of
Point pointed to by parameter.

%R LongRect * Replace with text representation of
LongRect pointed to by parameter.

%P LongPoint * Replace with text representation of
LongPoint pointed to by parameter.

Here’s an example of a call to PrDebug.

void MyTest Function (void)

{

Point pt = { 10, 5 };

unsi gned char *str = "\pCarpe dieni;

OSType cook = ' COX ;

short value = 42;

PrDebug(0, "\pToday's saying: “9%", pt = %,
type = %, value = %.", str, &pt, cook,
val ue) ;

}

The output you’d see in Premiere’s debug window
would be:

Today’ s saying: “Carpe dienf, pt = [h=5,v=10], type =
COX, value = 42.

Cursor Control Routines

SpinCurs:

StopCurs:

Starts the cursor spinning after a delay.
voi d Spi nCurs (short del ay);

This routine causes the cursor to start spinning after
delay ticks have elapsed. The spinning is handled by a
VBL task, so you don’t have to do anything further. To
start the cursor spinning immediately, do a SpinCurs(0).
To stop cursor spinning, see StopCurs documented
below.

Stop the cursor spinning.
voi d StopCurs (void);

This routine causes the cursor to stop spinning
immediately.

Adobe Premiere Software Development Kit 51

MySetCursor:

Event Routines

CheckStop:

CheckStopUpdate:

GetModifiers:

The Utility Library

Set the cursor to one of Premiere’s color cursors.
voi d MySet Cursor (short thelD);

This routine sets the cursor to one of Premiere’s color
cursors.

Important! This routine is not a general routine. It looks for
thelD in a list of preloaded color cursors. If you can find a
Premiere color cursor that fits your application among the 58
that are listed in the Premiere headers, you can use
MySetCursor to set that cursor. For your own custom cursors,
stick to GetCCursor and SetCCursor.

Important! Do not call this routine at interrupt time—it calls
SetCCursor, which moves memory.

Checks whether the user has pressed Command-*“.”.
char CheckStop (void);

This routine uses GetOSEvent to determine if the user
has pressed Command-*“.”, and returns true if so, false if
not. CheckStop uses GetOSEvent to prevent a context
switch.

Checks whether the user has pressed Command-“.” and
updates background windows.

char CheckSt opUpdate (void);

This routine uses GetNextEvent to determine if the user
has pressed Command-*“.”, and returns true if so, false if
not. Also CheckStopUpdate will process any pending
update events, which allows other Premiere windows to
update. Note that because CheckStopUpdate uses
GetNextEvent, there is the possibility of a context switch
whenever this routine is called. To prevent the context
switch, use UpdateAllWindows (described in the
Window category of this section) to manually update
background windows and use CheckStop (described
above) instead.

Gets the modifiers of the last event or the current
modifiers.

short GetModifiers (EventRecord *theEvent);

This routine returns a set of modifier flags based on the
modifiers field of the event record pointed to by
theEvent. If theEvent is nil, the GetModifiers does a
GetKeys and the output is based on that. Note that in
Premiere the space bar is considered a modifier in some
instances, so there’s a flag for that. Below is a list of the
bits that can be set in the output short (these are
provided in the Premiere headers):

#define bCnd 0x0100
#define bShift 0x0200
#def i ne bCapsLock 0x0400
#defi ne bOpti on 0x0800
#defi ne bControl 0x1000
#def i ne bSpace 0x2000

Adobe Premiere Software Development Kit 52

The Utility Library

Standard File Routines

SpecialGetFile:

SpecialGetFilePreview:

MyPutFile:

Provides an easy interface to CustomGetFile with
Premiere features.

char Special GetFile (
FSSpec *t hespec,
short nunTypes,
OSType *types,
StringPtr origNane,
short dl gl D,
long *type);

This routine provides an easy interface to CustomGetFile
and provides standard Premiere features like the Find
buttons. The file spec of the returned file is returned via
the reference parameter thespec. The numTypes
parameter tells CustomGetFile how many file types are
in the list pointed to by types. The origName string is
used as the default text in the Find dialog box, if the
user clicks the Find button. The dlgID parameter is the
ID of the custom get file dialog resource. The type of the
returned file is returned via the reference parameter
type, if you don’t want this information, pass nil for
type. The function returns true if the user chose a file,
false if he canceled.

Provides an easy interface to CustomGetFilePreview
with Premiere features.

char Speci al Get Fil ePrevi ew (
FSSpec *t hespec,
short nunilypes,
CSType *types,
StringPtr origNane,
short dl gl D,
| ong *type,
W ndowPtr t heW ndow) ;

This routine provides an easy interface to
CustomGetFilePreview and provides standard Premiere
features like the Find buttons, as well as giving the user
the ability to preview sounds and see movie and still
picture previews. The thespec, numTypes, types,
origName, dIgID, and type parameters are all the same
as in SpecialGetFile (described above). The theWindow
parameter is used internally by Premiere— you should
always use -1.

Provides an easy interface to StandardPutFile with
Premiere features.

void MyPutFile (
StringPtr pronpt,
StringPtr orignane,
St andar dFi |l eReply *reply);

This routine provides an easy interface to
StandardPutFile and provides standard Premiere
features like the volume free-space box. The prompt
string is the prompt for the StandardPutFile dialog. The
origname string is the default save name for the
StandardPutFile dialog. The reply parameter is a pointer

Adobe Premiere Software Development Kit 53

The Utility Library

to a StandardFileReply record into which the results of
the StandardPutFile are placed.

freehook: A standard file hook for displaying the free space on the
current volume.

pascal short freeHook (
short item
Di al ogPtr thedl g,
void *data);

This routine, when passed as a hook to Standard File,
displays the volume free space at the bottom of the
dialog. You can use this hook to make your standard file
dialogs look more like Premiere’s. The item, thedlg, and
data parameters correspond to the usual Standard File
hook parameters.

Dialog Routines

ShowModal: Does a ShowWindow on a modal dialog with proper
floating window handling.

voi d Showibdal (W ndowPtr theW ndow);

This routine should be called instead of ShowWindow to
show a modal dialog. It performs the correct floating-
window maintenance. Remember to make your dialogs
“not visible” in their DLOG resource.

DisposeModal: Does a DisposeDialog and deallocates UPPs on the
Power Macintosh.

voi d D sposeModal (W ndowPtr theW ndow);

This routine should be called instead of DisposeDialog
to dispose a modal dialog. It performs the correct
floating-window maintenance after disposing the
dialog. Also, on PowerPC-based Macintosh models it
disposes ControlActionUPPs and UserltemUPPs that
were allocated by calls to Userltem and SetCAction
(detailed in the Dialog category of the General
Macintosh Routines section in this chapter). It is
important to do this, otherwise your modal dialogs will
leak memory.

CenterModal: Puts up a standard modal dialog on the main screen.
short CenterMdal (short thelD);

This routine is convenient for putting up message alerts.
It loads the DLOG/DITL specified by the thelD parameter,
centers it on the main screen, then calls PrModalDialog
(filtering with modalfilter) until one of the first three
buttons are hit. It then disposes the dialog and returns
the number of the button that was hit. PrModalDialog
is described in the Interface Compatibility category of
this section and modalfilter is described below.

CenterModalKeys: Puts up a standard modal dialog on the main screen
with keyboard equivalents.

short Cent er Modal Keys (short thelD);

Adobe Premiere Software Development Kit 54

modalfilter:

notextfilter:

hoursfilter:

decimalfilter:

The Utility Library

This routine is just like CenterModal except that if the
user presses keys CenterModalKeys will find and click on
the first button it finds that starts with the key the user
pressed. This is the routine that Premiere uses for its “Do
you wish to save Untitled-1 before closing” Don’t Save/
Save/Cancel dialog box.

Standard movable modal dialog filter.

pascal char nodal filter (
Di al ogPtr thedi al og,
Event Record *event,
short *itemhit);

This routine is a convenient modal dialog filter
procedure that allows you to make your modal dialogs
behave like movable modal dialogs. This routine
handles moving the dialog, update events for
background windows, floating-window details,
handling of the return, enter, escape, and Command-".”
keys, and the Edit menu commands Cut, Copy, Paste, and
Clear. The parameters thedialog, event, and itemhit) are
the standard parameters for a modal dialog filter
procedure.

Movable modal dialog filter for dialogs with numeric
entry fields.

pascal char notextfilter (
Di al ogPtr thedi al og,
Event Record *event,
short *itemhit);

This routine is just like modalfilter (described above)
except that it only allows the numbers ‘0’ through ‘97, ‘-
', delete, tab, left-arrow, and right-arrow keys through.
This is good for dialogs that have numeric edit-fields
only. The parameters thedialog, event, and itemhit are
the standard parameters for a modal dialog filter
procedure.

Movable modal dialog filter for dialogs with time code
entry fields.

pascal char hoursfilter (
Di al ogPtr thedi al og,
Event Record *event,
short *itemhit);

This routine is just like notextfilter (described above)
except that it allows the additional characters “.”, *“:”,
and ““;” to be typed. This is good for dialogs that have
time code edit-fields only. The parameters thedialog,
event, and itemhit are the standard parameters for a
modal dialog filter procedure.

Movable modal dialog filter for dialogs with decimal
entry fields.

pascal char decimalfilter (
Di al ogPtr thedi al og,
Event Record *event,
short *itemhit);

Adobe Premiere Software Development Kit 55

AlertSystem:

Window Routines

CenterWindowOnMain:

UpdateAllWindows:

MakeWindowForFile:

The Utility Library

This routine is just like notextfilter (described above)
except that it allows the additional character *“.” to be
typed. This is good for dialogs that have fixed-point for
floating-point edit-fields only. The parameters
thedialog, event, and itemhit are the standard
parameters for a modal dialog filter procedure.

Error alert system.

short Al ertSystem (
short type,
char hascancel
short strlx,
short strlnum
short str2x,
short str2num);

This routine is a sophisticated error alert facility that is
used throughout Premiere. The window that is
displayed is a movable modal with the title “Note:”. The
type parameter specifies the icon that is to be displayed
in the dialog, typically stoplcon, notelcon, or
cautionlcon (which are defined in Dialogs.h). The
hascancel parameter tells AlertSystem whether the
dialog should have a Cancel button or not. If hascancel
is false, AlertSystem will always return 1; if hascancel is
true it may return 1 (OK) or 2 (Cancel). The strlx and
strinum parameters specify the ID of a STR# and the
index into that string list of the main alert text. The
str2x and str2num fields are used internally to look up
error codes—just pass 0 for these two parameters. Note
that you don’t have to worry about whether the dialog
will be big enough for your text—it resizes itself based
on the text size.

Center the given (hidden) window on the main screen.
voi d Cent er WndowOnMai n (W ndowPtr theW ndow) ;

This routine centers the given window on the main
screen. It is equivalent to the call:

Cent er W ndow(t heW ndow, &(* Get Mai nDevi ce())->gdRect);

Process any needed update events in other Premiere
windows.

voi d Updat eAl | Wndows (void);

This routine causes Premiere windows that need it to be
updated. Use this when you’re doing a custom dialog
filter for a movable modal dialog so that when the
window is moved, Premiere windows that are behind
your dialog will be updated.

Spawn a new window for the given file and file type.

voi d MakeW ndowFor Fil e (
CSType fil eType,
| ong reserved,
FSSpec *theFile);

Adobe Premiere Software Development Kit 56

MakeWindowForTextFile:

Graphics Routines

SafeNewGWorld:

BetterNewGWorld:

The Utility Library

This routine spawns a new window for the file specified
in theFile, given it’s file type fileType. The parameter
reserved should be set to nil. Premiere looks up the
given file type in its cross-reference list and creates a
window of the appropriate type for the file. Use this
routine to make your plug-ins act like Premiere’s—if
Premiere spawns a window after a certain operation,
you should too.

Spawn a new window for the given TEXT file.
voi d MakeW ndowFor Text Fil e (FSSpec *theFil e);

This routine spawns a new TEXT editor window. The file
specified by theFile must be a TEXT file and be less than
32K in length. It is appropriate, for instance, for EDL
export modules to open an EDL text editor window
showing the EDL that has just been generated.

Bug-free version of NewGWorld.

short Saf eNewGWIrl d (
GwWrl dPtr *theworl d,
short dept h,
Rect *box,
CTabHandl e ct ab,
GDHandl e gdev,
GwWor | dFl ags fl ags);

This routine is a replacement for NewGWorld that takes
the exact same parameters but works around a 32-bit
QuickDraw bug involving inverse tables. Use it instead
of NewGWorld.

Simplified version of NewGWorld.

short Better NewGMrl d (
GWrldPtr *theworl d,
short depth,
Rect *box,
short flags);

This routine is a replacement for NewGWorld that takes
fewer parameters. It is useful when you are going to
create either 24/32-bit GWorlds or GWorlds with default
color tables. The theworld, depth, box parameters
correspond to NewGWorld parameters. The flags
parameter, however, is Premiere-specific. The values
that can be added together to form flags are shown
below. They are provided in the Premiere headers.

enum {
gwFour Planes = 1, // Set pixmap cnpCount to 4
gwKeepLocal =2, // Alocate in |local nenory
gwLockPi xel s = 4, // Lock down the pixels
gwExtraRAM = 8 /'l Leave extra menory around

b

The gwFourPlanes flag will make a four-component
(ARGB) GWorld. The gwKeepLocal flag keeps the

GWorld in main memory (rather than on some video
card’s GWorld memory). The gwLockPixels flag tells

Adobe Premiere Software Development Kit 57

SetFont:

OffscreenBox:

Color82RGB:

The Utility Library

BetterNewGWorld to go ahead and do a LockPixels call
on the GWorld before returning it. The gwExtraRAM
flag tries to allow for an amount of extra memory after
the allocation of the GWorld equal to that GWorld’s
size. That is, allocating a 640 x 480 x 32-bit GWorld with
the gwExtraRAM flag set, BetterNewGWorld will only
allocate the 1.2 megabyte GWorld if there will be 1.2
megabytes free afterwards. Note that for best
performance in the average case, you’ll probably
benefit from setting the gwKeepLocal flag when you
call BetterNewGWorld.

BetterNewGWorld calls SafeNewGWorld to create the
GWorld and returns SafeNewGWorld’s error.

Set up the current port’s text parameters from a
standard template.

voi d Set Font (I ong which);

This routine provides a way to get to some common
text-parameter combinations easily and in an
internationally localizable way. SetFont looks up the
font ID and size associated with the value which and
makes TextFont and TextSize calls. The text face and
mode are left unchanged. Use this routine instead of
hard-coding font names or font IDs for localizability.
Below is a table of available font/size combinations and
their associated constants. These constants are provided
in the Premiere header files.

Table 0-4: SetFont Constants

Constant Description

fontGeneva9 Geneva 9-point

fontGeneval2 Geneva 12-point
fontChicago12 Chicago 12-point

fontAbout Built-in font used in about box

An offscreen version of TextBox.

void O fscreenBox (
StringPtr str,
| ong si ze,
Rect *box,
short style);

This routine is just like TextBox except that it draws into
an offscreen bitmap and blits to the screen. The
parameters str, size, box, and style correspond to the
parameters of TextBox. The only restriction is that the
rectangle pointer box must be < 512 pixels wide and <
256 high or it will be clipped. The main benefit of
OffscreenBox is that it prevents flicker when drawing
text.

Converts a Color8 structure to a RGBColor.

voi d Col or 82R@B (
Col or8 *incol or,
RGBCol or *out col or);

Adobe Premiere Software Development Kit 58

The Utility Library

This routine converts the Color8 structure pointed to by
incolor to the RGBColor structure pointed to by
outcolor. Color8 structures are useful because they
match the way RGB data is actually stored in a 32-bit
GWorld.

RGB2Color: Converts a Color8 structure to a RGBColor.

voi d RGB2Col or 8 (
RGBCol or *i ncol or,
Col or8 *outcolor);

This routine converts the RGBColor structure pointed to
by incolor to the Color8 structure pointed to by
outcolor. Color8 structures are useful because they
match the way RGB data is actually stored in a 32-bit
GWorld.

DitherBox: Converts a Color8 structure to a RGBColor.

voi d Dit her Box (
Di al ogPtr thedl g,
Rect *box,
RGBCol or *t hecol or);

This routine draws a rectangle of size box in the color
specified by thecolor into a preallocated 32-bit GWorld,
then blits it into the rectangle box in the port specified
by thedlg in ditherCopy mode. This routine is useful for
drawing color swatches (color samples in a dialog box,
for instance), because the color is accurately
represented even on screens with less than 24-bit color.

Time Code Routines

Time2Str: Convert a frame number to a formatted time code string
for a given frame rate.

void Tinme2Str (
| ong frane,
StringPtr str,
short fps,
short flags);

This routine converts the frame number frame into a
formatted time code string, storing it into the buffer str
as a Pascal string. The fps parameter indicates the frame
rate in frames per second. For drop-frame time code, set
the high bit of the fps parameter. The flags parameter
is a combination of the following flags (which are
defined in the Premiere headers):

Adobe Premiere Software Development Kit 59

Str2Time:

ParseTimecode:

FormatTimecode:

The Utility Library

enum
{
tsDelta = 0x01,
t sHours = 0x02,
t sOneHour = 0x04

b
Table 0-5: Time2Str Flags

Flag Value Description

tsDelta 0x01 Prepend a “A” character to the
output string.

tsHours 0x02 Format: HH:MM:SS:FF

tsOneHour 0x04 Format: H:MM:SS:FF

Time2Str doesn’t use ““;” characters to denote drop-
frame time code—it always uses colons. If you want
semicolons, use FormatTimeCode, described below.

Turn a formatted time code string into a frame number.

long Str2Time (
StringPtr str,
short |en,
short fps);

This routine converts the formatted time code text
pointed to by str of length len to a frame number at the
frame rate specified by fps. For drop-frame time code,
set the high bit of the fps parameter. Note that str is not
a Pascal string, but a buffer pointer, and the len
parameter specifies its length.

Turn a formatted time code string into a BIN_TC
structure.

voi d ParseTi necode (
StringPtr src,
BIN TC *ti mecode);

This routine parses the formatted time code string str
and writes the corresponding BIN_TC structure into the
BIN_TC pointed to by timecode. The BIN_TC structure is
provided in the Premiere header files. ParseTimeCode
knows that time code strings that use semicolon
characters to delimit the fields are in drop-frame
format, and allows an optional frame rate specifier in
square brackets (if no frame rate is specified, 30 is
assumed).

Turn a formatted time code string into a frame number.

voi d Format Ti necode (
BIN TC *ti necode,
StringPtr str);

This routine formats the BIN_TC structure pointed to by
timecode into a Pascal string and places it in str. If the
BIN_TC structure specifies drop frame time code, then
the output string will have semicolon delimiters. If the
BIN_TC specifies a frame rate other than 30, the output
string will have a “[nn]” frame rate specifier at the end.

Adobe Premiere Software Development Kit 60

StrToBin:

BinToStr:

StrToBcd:

BcdToStr:

BcdToBin:

The Utility Library

Turn a formatted time code string into a BIN_TC
structure.

void StrToBin (
StringPtr str,
BIN_TC *b,
short df,
short ntsc);

This routine parses the formatted time code string str
and writes the corresponding BIN_TC structure into the
BIN_TC pointed to by b. The df parameter should be
DROP_FRAME for drop-frame, NON_DROP_FRAME for
non-drop-frame. The ntsc field can have the values
TC_PAL for 25 frames-per-second, TC_NTSC for 30
frames-per-second, or TC_FILM for 24 frames-per-
second. These constants and the BIN_TC structure are
provided in the Premiere header files.

Turn a BIN_TC structure into a formatted time code
string.

voi d BinToStr (
BIN_TC *b,
StringPtr str);

This routine converts the BIN_TC structure pointed to by
b into a formatted time code string and stores it as a
Pascal string in the buffer str.

Turn a formatted time code string into a SMPTE
structure.

void StrToBcd (
StringPtr str,
SMPTE *bcd,
short franmeRate);

This routine parses the formatted time code string str
and writes the corresponding SMPTE structure into the
SMPTE pointed to by bcd. The frameRate field can have
the values TC_PAL for 25 frames-per-second, TC_NTSC
for 30 frames-per-second, or TC_FILM for 24 frames-per-
second. These constants and the SMPTE structure are
provided in the Premiere header files.

Turn a SMPTE structure into a formatted time code
string.

voi d BcdToStr (
StringPtr str,
SMPTE *bcd);

This routine converts the SMPTE structure pointed to by
bcd into a formatted time code string and stores it as a
Pascal string in the buffer str.

Turn a SMPTE structure into a BIN_TC structure.

voi d BcdToBin (
SMPTE *t,
BIN TC *b,
short franmeRate);

This routine converts the SMPTE structure pointed to by
t into a BIN_TC structure and stores it in the BIN_TC

Adobe Premiere Software Development Kit 61

BinToBcd:

The Utility Library

pointed to by b. The frameRate field can have the values
TC_PAL for 25 frames-per-second, TC_NTSC for 30
frames-per-second, or TC_FILM for 24 frames-per-
second. These constants and structures are provided in
the Premiere header files.

Turn a BIN_TC structure into a SMPTE structure.

voi d Bi nToBcd (
BIN_TC *b,
SMPTE *t,
short dur);

This routine converts the BIN_TC structure pointed to by
b into a SMPTE structure and stores it in the SMPTE
pointed to by t. The dur parameter, if true, tells
BinToBcd that b represents a duration, rather than a
time. This only matters for NTSC drop-frame. If dur is
true, no validation is performed, but if dur is false (that
is, b represents a location in time), BinToBcd makes that
the output SMPTE doesn’t land on a drop frame.

Data Export Module Utilities
The routines in this category are only valid in a data export (‘ExpD’) plug-in.

GetExportMovie:

GetExportFSSpec:

GetExportClipID:

GetExportDivisor:

Return the QuickTime movie handle for the export clip.

Movi e Get Export Movie (
Dat aExpor t Handl e exportData);

This routine examines the DataExportRec record
referenced by parameter exportData and extracts a
QuickTime movie handle, if available. If the clip is not a
QuickTime movie, GetExportMovie returns nil.

Returns the FSSpec of the clip being exported.

voi d CGet Export FSSpec (
Dat aExport Handl e export Dat a,
FSSpec *t heSpec)

This routine returns, via the reference parameter
theSpec, the FSSpec of the clip being exported by
examining the DataExportRec passed to it through
parameter exportData. You may use this FSSpec to
directly access the file that is associated with the clip
being exported, or use it to get the clip’s name.

Returns the clipID of the clip being exported.

short GetExportdiplD (
Dat aExport Handl e exportData)

This routine returns the clip ID of the clip being
exported by examining the DataExportRec passed to it
through parameter exportData.

Returns the “clicks divisor” of the clip being exported.

short Get ExportDi visor (
Dat aExport Handl e exportData)

This routine returns the clicks (600ths of a second)
divisor of the clip being exported by examining the

Adobe Premiere Software Development Kit 62

GetExportFPS:

GetRate:

The Utility Library

DataExportRec passed to it through parameter
exportData. To determine the frame rate for the clip
you may perform the following calculation:

framesPerSecond = CLICKS / GetExportDivisor(theData);

Or, better yet, simply call GetExportFPS, described
below.

Returns the frame rate of the clip being exported.

short Get Export FPS (Dat aExport Handl e
export Dat a)

This routine gives the frame rate in frames/second of the
clip being exported by examining the DataExportRec
referenced by parameter exportData.

Given some audio flags, returns some common sample
rates.

| ong Get Rate (short fl ags)

This routine given some Premiere audio flags as the
flags parameter, returns a sample rate in integer
samples per second. GetRate knows how to handle the
gaDropFrame flag. Following is a table of most of the
possible results from GetRate:

Table 0-6: GetRate Flags

Flags Output
gabkHz 5563
ga5kHz + gaDropFrame 5558
gallkHz 11127
gallkHz + gaDropFrame 11116
ga22kHz 22254
ga22kHz + gaDropFrame 22232
gad4dkHz 44100
gad44kHz + gaDropFrame 44056
ga48kHz 48000
ga48kHz + gaDropFrame 47952

Notice that the drop-frame versions of the sample rates
are simply 0.1% smaller than their non-drop
counterparts. Since Premiere 4.2 can handle any sample
rate, you may wish to simply perform this calculation
yourself. GetRate only handles the common rates.

EDL Export Module Utilities

The routines in this category are used by EDL export (‘ExpM’) plug-ins. The
block routines pertain to the project data block list passed to EDL export
modules. For more information on the format of this data, see the chapter

EDL Export Modules.

Important! The block routines below (NextBlock, CountTypeBlocks, FindBlock,
GetBlock, and ExtractBlockData) are not exported by Premiere. The source code for
these routines, however, is provided in “Generic EDL.c”.

Adobe Premiere Software Development Kit 63

The Utility Library

GetWipeCodes: Return the current set of user wipe code identifiers.
voi d Get W peCodes (|l ong *codes);

This routine returns, via the reference parameter codes,
Premiere’s current set of wipe codes as saved in the
preference file. The user may modify these codes
through the EDL Wipe Codes dialog (see EditWipeCodes
below). The codes parameter must point to an array of
20 longs.

EditWipeCodes: Return the current set of user wipe code identifiers.
voi d Edi t WpeCodes (void);

This routine puts up the EDL Wipe Codes dialog, shown
below. The wipe code values are saved internally—you
access them by calling GetWipeCodes, described above.

W ket
[Loed...] [ous..] [Omfoulls] [Concad | E

NextBlock: Advance the given BlockRec pointer to the next block.
voi d Next Bl ock (Bl ockRec **srcBl ock);

This routine takes the address of a BlockRec pointer as
the parameter srcBlock. It adds the size of the block
srcBlock currently points to srcBlock and stores the
result back in *srcBlock.

CountTypeBlocks: Return the number of blocks of a given type.

| ong Count TypeBIl ocks (

| ong type,
Bl ockRec *srcBl ock);

This routine returns the number of blocks of type type
starting from srcBlock. If type is -1, CountTypeBlocks
returns the total number of blocks after srcBlock.

FindBlock: Find a particular block.

Bl ockRec *Fi ndBl ock (
| ong type,
| ong t hel D,
| ong i ndex,
Bl ockRec *srcBl ock);

This routine can be used to locate a specific block by
index, type, or ID. The routine starts searching from
srcBlock. The type parameter specifies the block type to
look for, where -1 means “any type.” The thelD
parameter allows you to specify a specific block ID of the
given type. The index parameter allows you to specify a

Adobe Premiere Software Development Kit 64

GetBlock:

ExtractBlockData:

The Utility Library

block index. FindBlock returns a BlockRec pointer. If the
specified block could not be found, FindBlock returns
nil. The following table details the routine’s behavior
with different combinations of parameters:

Table 0-7: FindBlock Parameters

Type thelD | Index | Action

-1 -1 valid Find the block index blocks from
srcBlock.

valid -1 valid Find the index-th block of type
type from srcBlock.

valid valid -1 Find the block of type type and ID
thelD.

Return a handle to a copy of a particular block’s data.

Bl ockRec **Get Bl ock (
| ong type,
| ong thel D,
| ong i ndex,
Bl ockRec **srcBl ock);

This routine calls FindBlock using the type, thelD, and
index parameters starting from *srcBlock. See
FindBlock, above, for details about how those
parameters are used. If the specified block is found,
GetBlock calls PtrToHand to copy the block’s data into a
handle and returns the handle. If the block is not found,
GetBlock returns nil. Note that *srcBlock is never
changed (it is essentially a const parameter).

Copy a block’s data to a destination buffer.

voi d Extract Bl ockData (
Bl ockRec *srcBl ock,
voi d *destination,
| ong *mexl en);

This routine copies the data for srcBlock (not including
the BlockRec) to the buffer destination up to a

maximum of *maxlen bytes. The actual number of bytes
copied is returned via the reference parameter maxlen.

Adobe Premiere Software Development Kit 65

Bottlenecks

Adobe Premiere provides a set of bottleneck procedures to its plug-in
modules to perform common operations. This chapter describes the
BottleRec structure that contains the bottleneck function pointers and
describes each bottleneck.

The BottleRec Structure

Bottlenecks are passed to plug-ins through a structure called a BottleRec.

typedef struct {
shortcount; // Nunber of routines
shortreserved| 14] ;

StretchBitsPtrStretchBits;

Di st ort Pol ygonPtr Di st ort Pol ygon;
Pol yToPol yPt r MapPol ygon;

AudSt ret chPt r Audi oSt ret ch;

AudM xPt r Audi oM x;

AudSunPt r Audi oSum

AudLi mit PtrAudioLim t;

Di st ort Fi xedPol ygonPtr Di stortFi xed;
Fi xedToFi xedPt r Fi xedToFi xed;

| ongl mageKey;

Resanpl ePt r Resanpl €;

Audi oMungePt r Audi oMunge;

| ongunused|[1] ;
} Bottl eRec;

The count field specifies how many bottleneck routines follow the reserved
field. As of Adobe Premiere 4.2, count is 12. The reserved and unused fields
are reserved for future use by Adobe Systems and are currently O.

For backwards-compatibility, the Power Macintosh version of Adobe
Premiere also keeps a parallel “UPP version” of the bottleneck record
around. It is only passed to 68K plug-ins running under Power Macintosh
Premiere (the alternate record does not exist under 68K Premiere).

Adobe Premiere Software Development Kit 66

Bottlenecks

typedef struct {
shortcount; // nunber of routines
shortreserved[14] ;

Uni versal ProcPtrStretchBits;
Uni ver sal ProcPtrDi st ort Pol ygon;
Uni ver sal ProcPt r MapPol ygon;
Uni ver sal ProcPt r Audi oSt ret ch;
Uni ver sal Pr ocPt r Audi oM x;

Uni ver sal ProcPt r Audi oSum

Uni ver sal ProcPt r Audi oLi m t;
Uni ver sal ProcPtrDi stort Fi xed;
Uni ver sal ProcPtr Fi xedToFi xed;
| ongl magekKey;

Uni ver sal ProcPt r Resanpl e;

Uni ver sal ProcPt r Audi oMunge;

| ongunused[1] ;
} UPPBottl eRec;

The “proc info” macros for these routines are included in the Premiere
headers. While it would be possible for a Power Mac plug-in to call
bottlenecks through the UPP record (using CallUniversalProc) it only incurs
extra overhead. This overhead can be avoided by simply calling through the
PowerPC procedure pointers in the bottleneck record provided. The
important thing to remember is that Premiere knows whether it (Premiere) is
a 68K application or a Power Mac application and whether your plug-inis a
68K plug-in or a Power Mac plug-in. So Premiere always passes you the
bottleneck record that is appropriate for the situation.

Most Premiere plug-ins have a standard record associated with the plug-in
type. Usually an appropriate bottleneck record is provided in that record.
However, you can always get the bottleneck record by making the following
call:

{

Bottl eRec *bottles;

bottles = (Bottl eRec *)Get Ad obal (gBottl| eNecks);

The Bottleneck Routines

StretchBits: The StretchBits routine works very much like CopyBits. It
has two enhancements, and a few restrictions.

pascal void StretchBits (
BitMap *srcBits,
Bi t Map* dstBits,
Rect *srcRect,
Rect *dst Rect,
short node,
RgnHandl e maskRgn);

StretchBits takes exactly the same parameters as
CopyBits. The two restrictions are that it only works on
32-bit deep GWorlds, and that it does not handle mask
regions. If either of these conditions are not met,
StretchBits calls CopyBits. Its enhancements are that it
properly processes the alpha channel during the copy
(whereas CopyBits clears the alpha channel in any pixel

Adobe Premiere Software Development Kit 67

DistortPolygon:

MapPolygon:

AudioStretch:

Bottlenecks

it generates), and that when the destination is larger
than the source, it performs bilinear interpolation to
generate the destination. The latter feature provides
smoothed enlargement of source material where
CopyBits would pixelate the resulting image.

The DistortPolygon routine takes a rectangle from a
source GWorld and maps the enclosed image to a four-
point polygon in a destination GWorld.

pascal void DistortPol ygon (
GWr | dPtr src,
GMor |l dPtr dest,
Rect *srcbox,
Poi nt *dstpts);

The src and dest GWorlds must both be 32 bits deep. The
srcBox parameter specifies a rectangular area within the
src GWorld. The dstpts parameter should be set to point
to an array of four Points which describe a four-point
polygon in the destination GWorld. DistortPolygon will
distort the pixels within srcbox into the specified
polygon in dest. When scaling up, DistortPolygon uses
bilinear interpolation. When scaling down, it uses pixel
averaging. All 32-bits of the source (that is, RGB plus the
alpha channel) are transferred to the destination.

The MapPolygon routine takes a four-point polygon in
a source GWorld and maps it into a four-point polygon
in a destination GWorld.

pascal void MapPol ygon (
Gwrl dPtr src,
Gwor |l dPtr dest,
Poi nt *srcpts,
Poi nt *dstpts);

MapPolygon is just like DistortPolygon except that its
source is specified as a four-point polygon (srcpts) in src
instead of a rectangle. It also performs pixel averaging
and bilinear interpolation as appropriate, and moves all
32 bits of the source to the destination.

The AudioStretch routine performs sample rate, format
(8- or 16- bit), and mono/stereo conversions between
two buffers of audio.

typedef pascal void (*AudStretchPtr) (
Ptr src,
| ong srclen,
Ptr dest,
| ong destl en,
short flags);

The src parameter is a pointer to a buffer full of audio
samples, and srclen is its length in bytes. The dest
parameter is a pointer to a buffer for the resampled
audio, and destlen is its length. The flags parameter
provides information about both buffers of audio. The
high byte contains the flags for the source, the low byte
contains the flags for the destination. These bits are of
interest:

#define gaStereo 0x01
#define gal6Bit 0x02

Adobe Premiere Software Development Kit 68

AudioMix:

AudioSum:

AudioLimit;

Bottlenecks

For example, to go from an 8-bit stereo source to 16-bit
stereo destination, set flags to (gaStereo << 8) + (gal6Bit
+ gaStereo).

Eight-bit audio should be in offset format, and 16-bit
audio should be in signed short format. AudioStretch
stretches (or squashes) the audio in src to fit in dest,
performing any format conversions according to the
flags.

The AudioMix routine is a vestige of Premiere 1.0 and
2.0 and is no longer supported. Use the more powerful
AudioSum routine described next.

The AudioSum routine sums a buffer of audio into a
longword accumulation buffer, providing a mix level.

pascal void Audi oSum (

Ptr src,

Ptr dest,

| ong wi dt h,

| ong scal e,

short fl ags,

| ong part,

long total);

The src parameter is the source buffer that is being
summed, which is regular 8- or 16-bit audio, either
mono or stereo. The size in samples of src is given in
width. The dest parameter points to the accumulation
buffer. It is an array of longs, and must be four times the
size of src. The scale parameter takes a value in 16.16
fixed-point format with a maximum value of
0x00020000, or 2.0. The audio flags are the same as for
AudioMix: use the values gaStereo and gal6Bit to
describe the audio in the src buffer. Part is the buffer
number you’re mixing, which varies from 0 to total - 1.
Total is the total number of buffers you’re mixing into
the accumulation buffer. Note that since AudioSum
adds src to dest, dest must be set to all zeros before the
first call to AudioSum.

The AudioLimit routine clips the source audio buffer
while copying to a destination buffer.

pascal void AudioLimt (
Ptr src,
Ptr dest,
| ong wi dt h,
short fl ags,
long total);

The src parameter is a longword accumulation buffer
(usually one you’ve been accumulating into with
AudioSum). The width parameter gives the size of the
output buffer in samples. The dest parameter is the
output buffer, which will contain regular 8- or 16-bit
audio. The flags parameter describes the format of the
audio that should be placed in dest. The total parameter
is the total number of buffers that were mixed (with
AudioSum) to get src.

Adobe Premiere Software Development Kit 69

DistortFixed:

FixedToFixed:

ImageKey:

Bottlenecks

The DistortFixed routine is analogous to DistortPolygon
but maps the given rectangular area to a four-point
polygon specified in fixed-point coordinates.

pascal void DistortFixed (
Gwrl dPtr src,
Gwor |l dPtr dest,
Rect *srcbox,
LongPoi nt *dstpts);

DistortFixed is just like DistortPolygon except that the
destination polygon is specified with LongPoints, which
have their h and v coordinates as 16.16 fixed-point
values.

The FixedToFixed routine is analogous to MapPolygon
but maps a four-point polygon specified in fixed-point
coordinates to another fixed-point polygon.

pascal void Fi xedToFi xed (
Gmorl dPtr src,
Gwor | dPtr dest,
LongPoi nt *srcpts,
LongPoi nt *dstpts);

FixedToFixed is just like MapPolygon except that both
the source and destination polygons are specified in
with LongPoints, which have their h and v coordinates
as 16.16 fixed-point values.

ImageKey is a private bottleneck and should not be
called by plug-in modules.

Adobe Premiere Software Development Kit 70

Globals

Because of the modular nature of Adobe Premiere, Premiere’s globals are
not stored in the typical A5-relative fashion. Instead, Premiere accesses
globals symbolically through two accessor routines, GetAGlobal and
SetAGlobal, which are documented in the Premiere Specific Routines section
of the chapter The Utility Library.

Look But Don’t Touch!

The global variables listed below are the same ones Adobe Premiere depends upon
for proper operation. The following are crucial: do not use SetAGlobal to modify
the values of variables not listed in the Read/Write section below and do not
depend upon the values of globals that are not specifically documented here (even
though they might be listed in the Premiere headers). Adobe reserves the right to
change the value or meaning of variables that are not specifically documented here
without notice.

Read/Write Globals

The variables listed below can be used by your plug-in modules on a read-
write basis, within a single call to your plug-in.

gSaveRef: long

This global is a location that can be used to save a long
word value to be read within some routine that cannot
see your variables. The example below shows how to use
gSaveRef to pass a string pointer into a user item
procedure. The value you give to gSaveRef is completely
up to you—for instance, if you need to pass more than
one item of information, create a record and set
gSaveRef to the address of the record.

pascal void StringUserltenProc (WndowPtr w ndow,
short itemn
{
Rect box;
FontInfo info;
StringPtr theString;

theString = (StringPtr) Get Ad obal (gSaveRef);
Get DRect (wi ndow, item &box);

Get Font | nf o(& nf 0);

MoveTo(box. |l eft, box.top + info.ascent);
DrawString(theString);

Adobe Premiere Software Development Kit 71

gExportRef:

gCompileErr:

Globals

void MyDi al og (void)

{
unsi gned char nyString[] = "\pZi ppity do da";
Di al ogPtr di al og;
short item
Set Ad obal (gSaveRef, (long)nyString);
di al og = Cet NewDi al og(kMyDLOG D, nil, (W ndowPtr)-1);
Userlten(dial og, kStringUserltem
StringUserltenProc);
ShowMbdal (di al og) ;
do {
Pr Mbdal Di al og(nodal filter, & ten);
} while (item!= 1);
Di sposehbdal (di al og);
}
long

This global is just like gSaveRef but is specifically for use
by Export (‘ExpD’ and ‘ExpM’) modules. Other (non-
export) modules should avoid using this global to avoid
conflicts.

long

New in Premiere 4.2, a plug-in can set this global if it
couldn't render and wants Premiere to stop compiling.
Set it with the error the plug-in got while rendering
(most likely out of memory).

Read Only Globals

The variables listed below can be read by your plug-in modules. Do not
modify the values of these global variables.

gSysVersion:

gResFileNum:

gStillDefault:

gPluginVRefNum:

short

This global contains the system software version in 8.8
BCD. For example, if the current machine is running
System 7.1, GetAGlobal(gSysVersion) will return 0x0710.

short

This global contains the resource file reference number
of Premiere’s application resource file.

long

This global contains the default still image duration as a
number of frames at the current frame rate.

short

This global contains the vRefNum of the current plug-ins
folder.

Adobe Premiere Software Development Kit 72

gPluginDirID:

gWorkVRefNum:

gWorkDirID:

gTempVRefNum:

gTempDirID:

gPrefVRefNum:

gPrefDirlID:

gPrintRec:

gGWStrip:

gOneBitWorld:

Globals

long

This global contains the dirID of the current plug-ins
folder.

short

This global contains the vRefNum of the location for
temporary files and newly captured movies.

long

This global contains the dirlD of the location for
temporary files and newly captured movies.

short

This global contains the vRefNum of the Premiere
application.

long

This global contains the dirIlD of the Premiere
application.

short

This global contains the vRefNum of the preferences file
location.

long

This global contains the dirlD of the preferences file
location.

THPrint

This global contains a handle to Premiere’s print record.
You can use this print record if your plug-in does any
printing.

GWorldPtr

This global contains a pointer to a locked, 32-bit deep
“strip buffer” GWorld. The width of this GWorld is
determined by the current “maximum image size”
preference which is available from the global
gMaxWidth described below. The height of the strip
GWorld is fixed at kBandHeight, a constant that is
defined in the Premiere headers. You can use this buffer
for banding images.

Important! This GWorld is created and locked at
initialization time. Do not unlock it!

GWorldPtr

This global contains a pointer to a locked, 1-bit deep
512 x 256 utility GWorld. You can use this buffer for
offscreen black-and-white drawing.

Important! This GWorld is created and locked at
initialization time. Do not unlock it!

Adobe Premiere Software Development Kit 73

gRGB2Y:

gRGB2UV:

Globals

unsigned char *

This global contains three consecutive Y (luminance)
tables as follows:

Table 4-1: gRGB2Y Luminance Tables

Indices Description

0...255 Luminance value of red values 0...255
256...511 Luminance value of green values 0...255
512...767 Luminance value of blue values 0...255

You can use this table to determine the Y (luminance) of
a given RGB pixel value. Here’s an example of how you
might use this table (although this would be an
inefficient approach for a lot of pixels):

unsi gned char Col or8Y (Col or8 *pi xel)

{
unsi gned char *| umaTabl e;
unsi gned char | unms;
| umaTabl e = (unsi gned char *) Get Ad obal (gRGB2Y);
luma = | unaTabl e[pi xel ->red];
| uma += | umaTabl e[pi xel - >green + 256];
| uma += | umaTabl e[pi xel - >bl ue + 512];
return(lunma);
}
short *

This global contains three consecutive U tables followed
by three consecutive V tables (which together describe
chrominance) as follows:

Table 0-2: gRGB2UV Chrominance Tables

Indices Description

0...255 U value of red values 0...255
256...511 U value of green values 0...255
512...767 U value of blue values 0...255
768...1023 V value of red values 0...255
1024...1279 V value of green values 0...255
1280...1535 V value of blue values 0...255

You can use this table to determine the U and V of a
given RGB pixel value. Here’s an example of how you
might use this table (although this would be an
inefficient approach for a lot of pixels):

Adobe Premiere Software Development Kit

74

gDecimalPt:

gMultiply:

gHasOutline:

gBottleNecks:

Globals

voi d Col or8UV (Col or8 *pixel, short *outU, short *outV)
{

short *uvTabl e;

short u, v;

uvTabl e = (short *)Get Ad obal (gRGB2WV)
uvTabl e[pi xel - >red];
uvTabl e[pi xel ->green + 256];
uvTabl e[pi xel - >bl ue + 512];
uvTabl e[pi xel ->red + 768];

+= uvTabl e[pi xel - >green + 1024];

+= uvTabl e[pi xel - >bl ue + 1280];

I+ + 1l

< << ccc

*out U
*out V

u;
A

char

This global contains the decimal separator from the
record returned from IUGetIntl(0). When you have the
urge to place a literal “.” in a string, use the value of
gDecimalPt instead.

unsigned char *

This global contains a pointer to a 64K 8 x 8 multiply
table. You can use this table to perform fast 8-bit
multiplication operations. To multiply two 8-bit values,
place the first byte in the high 8-bits of an unsigned
short, place the second byte in the low 8-bits of the
unsigned short. Use the unsigned short as an index into
the gMultiply table. The result is the unsigned char at
that location. Here’s an example (but note that this
table is often more useful from assembly):

{
unsi gned char *nultiply;
unsi gned char result, bytel, byte2
unsi gned short index;
mul tiply = Get Ad obal (gWul tiply);
bytel = 6;
byte2 = 20;
i ndex = (bytel << 8) | byte2
result = multiply[index]; // result gets 120
}
long

This global contains true if TrueType fonts are available,
false if not.

BottleRec *

This global contains a pointer to Premiere’s bottleneck
record. With Power Mac Premiere this record will
contain function pointers suitable for direct use by
native Power Mac plug-ins. With 68K Premiere this
record will contain function pointers suitable for direct
use by 68K plug-ins. Most plug-ins are passed an
appropriate bottleneck record in their respective plug-
in data records, but routine that don’t have access to
that data record can access the bottlenecks via the
global. See also gUPPBottleNecks below.

Adobe Premiere Software Development Kit 75

gUPPBottleNecks:

gMaxWidth:

gMaxHeight:

gLockStillAspect:

gBit160K:

gSysWindow:

gTicks:

gTickNumer:

gTickDenom:

Globals

UPPBottleRec *

This global, like gBottleNecks contains a pointer to
Premiere’s bottleneck record except that it is filled with
UPPs rather than Power Mac function pointers. This is
suitable for use by 68K plug-ins running under Power
Mac Premiere. Most plug-ins are passed an appropriate
bottleneck record in their respective plug-in data
records, but routine that don’t have access to that data
record can access the bottlenecks via the global. See also
gBottleNecks above.

Important! This global is nil under 68K Premiere.

long

This global contains the maximum frame width set in
the current preferences.

long

This global contains the maximum frame height set in
the current preferences.

long

This global contains the default state of the “lock
aspect” attribute for still images set in the current
preferences.

long

This global contains true if Sound Manager 3.0 or later
is installed.

WindowPtr

This global contains a pointer to the “HIDE window,”
which provides a variety of services to ‘HDLR’ and ‘Draw’
plug-in modules. See the Other Plug-Ins chapter for
more information.

long

This global is equivalent to a call to TickCount() (in fact,
doing GetAGlobal(gTicks) does exactly that). See also
gTickNumer and gTickDenom below.

long

This global contains the numerator of a fraction that
exactly describes the duration of a Macintosh “tick.” A
tick is not exactly 1/60th of a second, but is in fact 1/
60.14th of a second. Thus GetAGlobal(gTickNumer)
returns 6014. See also gTickDenom.

long

This global contains the denominator of a fraction that
exactly describes the duration of a Macintosh “tick.” A
tick is not exactly 1/60th of a second, but is in fact 1/
60.14th of a second. Thus GetAGlobal(gTickDenom)
returns 100. See also gTickNumer.

Adobe Premiere Software Development Kit 76

gqd:

gQTVers:

gHaveDragAndDrop:

Globals

QDGlobals *

This global contains a pointer to Premiere’s QuickDraw
globals. You can use this record to access the handy
arrow cursor and patterns therein.

short

This global contains the QuickTime version in 8.8 BCD.
For example, if the current machine is running
QuickTime 1.6.1, GetAGlobal(gQTVers) will return
0x0161.

long

This global contains true if the Macintosh Drag & Drop
extension is present or false if not.

Adobe Premiere Software Development Kit 77

CDEFs

Premiere has several built-in control definition procedures (CDEFs) that you
can use in your dialogs to help your plug-in have a consistent “look-and-
feel” with the rest of Premiere. Here’s a picture to give you an idea of
what’s available:

Control Hits

Because of a “feature” of the Dialog Manager, controls that do their own
tracking (as do all of Premiere’s controls) do not cause ModalDialog to
return a “hit” for dialog control manipulations. For instance, if you had a
popup menu in your dialog using Premiere’s popup CDEF as item number 5,
and the user changes the value of the popup, you will not get item 5 back
from ModalDialog—no hit is registered. If you need to know immediately
when a control’s value has been modified, use a dialog filter procedure to
manually track your controls. An example is shown below:

pascal char MyFilter (DialogPtr dialog, EventRecord *event, short *hit)
{

Poi nt wher e;

Control Handl e control;

short which, ol dvalue, part;

char result = fal se;

Set Port (di al og) ;
result = nodalfilter(dialog, event, hit);
if (!result && event->what == nouseDown)
{
where = event->where;
A obal ToLocal (&where);
whi ch = FindDIten{dial og, where) + 1;
if (which !'= 0 && FindControl (where, dialog, &control))
{
ol dval ue = GetCtl Val ue(control);
part = TrackControl (control, where, nil);
if (oldvalue !'= GetCtlValue(control))

{
*hit = which;
result = true;
}
else if (part = 0)
{
*hit = which;
result = true;
}

Adobe Premiere Software Development Kit 78

el se
{
*hit =
resul t
}

}
}

return(result);

}

no

true;

CDEFs

The modal filter routine used above is documented in the chapter The Utility

Library.

Control Types

Horizontal Sliders

You can create a variety of horizontal sliders with CDEF 136. The base ProclID
for this CDEF is 2176.

Table 0-3: Horizontal Sliders

Variation

ProclD

Description

Slider

0

2176

This variation provides a slider with a rectangular
thumb. This is the most common type of
horizontal slider used in Premiere. Adobe
encourages you to use ProcID 2176 rather than
2177 unless your specific situation warrants
otherwise.

| B | | e

2177

This variation provides a slider with an oval
thumb and a thin slide bar. This slider is no longer
used in Premiere or its plug-ins, but you can use it
if it fits your application.

2178

This variation provides a slider with an oval
down-pointing thumb and a thin slide bar. This
slider is no longer used in Premiere or its plug-ins,
but you can use it if it fits your application.

2179

This variation provides a slider with an oval up-
pointing thumb and a thin slide bar. This slider is
no longer used in Premiere or its plug-ins, but you
can use it if it fits your application.

2180

This variation provides a slider with a rectangular
down-pointing thumb. This slider is used by
Premiere in the Transparency dialog. Adobe
encourages you to use ProcID 2180 rather than
2178 above unless your specific situation warrants
otherwise.

2181

This variation provides a slider with a rectangular
up-pointing thumb. This slider is used by Premiere
in the Transparency dialog. Adobe encourages
you to use ProcID 2181 rather than 2179 above
unless your specific situation warrants otherwise.

2188

This variation provides a slider with a full frame
and rectangular thumb . This slider is used by
Premiere in clip windows for “movie location.”

Adobe Premiere Software Development Kit

79

CDEFs

Vertical Sliders
You can create vertical sliders with CDEF 134. The base ProcID for this CDEF
is 2144 with a single variation.

Table 0-4: Vertical Sliders

Variation | ProcID | Description Slider

1 2145 This variation provides a vertical slider with an
oval thumb and a thin slide bar. This slider is no
longer used in Premiere or its plug-ins, but you
can use it if it fits your application.

Popup Menus

You can create popup menus with CDEF 137. The base ProcID for this CDEF is
2192. Premiere’s popup CDEF, while somewhat less flexible, is much easier to
use than the Apple Communications Toolbox-style CDEF.

Table 0-5: Popup Menus

Variation | ProcID | Description Slider

0 2192 This variation provides a a basic popup menu.

akHz ¥

The MENU ID is taken from the control’s refCon field, and the initially
checked item is taken from the control’s value field. To determine which
item is chosen, simply call GetCtlValue on the control.

If the width of the control bounds rectangle is less than 25 pixels, a “popup
bud” is created. [

To get the correct look for a popup bud, make the control bounding box 20
pixels wide.

Adobe Premiere Software Development Kit 80

Transitions

A transition in Adobe Premiere takes two source GWorlds and processes
them into a single destination GWorld.

Total
Source 1 art
SPFX f===f»| Destination
Source 2

All three GWorlds are always 32-bits deep. Transitions are almost always
time-variant, and the transition is given the total duration in frames of the
transition and the current frame within that transition. Premiere handles the
overhead involved with retrieving and storing the frames.

The Transitions window in Premiere shows a 9-frame animated preview of
each transition. Premiere automatically generates these preview frames by
calling your SPFX module, then storing them in compressed ‘ICNc’ resources
in your transition’s resource fork. Consequently, if the code for a transition
is changed, any ICNc resources that Premiere may have stored in your
transition should be deleted (see the example transition modules).

Transition modules are stored in files of type ‘SPFX’, with creator ‘PrMr’. The
name of the file is the name that Premiere will display in the Transitions
window to refer to the transition. A transition file will contain several
resources, which are listed in the table below. Following the table is a
detailed description of each resource.

Table 0-6: Transition Resources

Type & ID Description

FXvs 1000 A two-byte version number stored as a short integer.

TEXT 1000 A textual description of what the transition does.

Fopt 1000 A resource that describes what options the transition supports.

FXDF -1 An OSType that gives a mapping to one of the standard SMPTE wipes.

SPFX 1000 The transition code itself (68K). The entry point is the first byte of the
resource.

SPFx 1000 The transition code itself (PowerPC). The entry point is specified by the
PEF.

Adobe Premiere Software Development Kit 81

Transitions

FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0001.

TEXT 1000

This resource contains a plain text description of the transition and is
displayed beside the animation of the transition in the Transitions window.
Look at Premiere’s standard transitions for examples of how this text should
be worded.

Fopt 1000

This resource tells Premiere what options your transition supports and
provides a set of initial values for your options. The user can bring up the
standard Premiere transition options dialog for all transitions, including
yours.

[Wipe Salling s

Hordar
e
e Thikk

[Rewer wxiunl remrxar

[e==ar]]

The structure of an Fopt resource is shown below in Rez format, along with
some bit values you’ll use with the definition:

Adobe Premiere Software Development Kit 82

Transitions

type ' Fopt'

{
byt e; /1l Valid corners mask
byt e; /1 Initial corners
byt e; /'l Has custom in pairs, tinme invariant
byte No = 0, Yes = 1; /'l Exclusive?
byte No = 0, Yes = 1; /'l Reversible?
byte No = 0, Yes = 1; /1l Has edges?
byte No = 0, Yes = 1, /'l Has start point?
byte No = 0, Yes = 1, /'l Has end point?

b

#define bitTop 0x01 // Corner bits

#defi ne bitR ght 0x02

#def i ne bitBottom 0x04

#define bitLeft 0x08

#defi ne bit Upper Ri ght 0x10
#defi ne bitLowerRi ght 0x20
#defi ne bitLowerLeft 0x40
#defi ne bitUpperLeft 0x80

#define bitPairs 0x01 // Opposite corners turn on together
#def i ne bitCustom 0x02 // This SPFX has a custom settings dial og
#define bitlnvariant O0x04 // This SPFX does not vary over tine
#define bitNolstCall 0x08 // Don't do an initial esSetup cal
#def i ne bitUsesSource 0x20 // esSetup uses call back

Fopt—first byte: Valid corners

The first byte of the Fopt resource uses the corner bits listed above. It has a
bit set for each valid corner. For instance, if your transition can only operate
top-to-bottom or bottom-to-top, you’d set the first byte of this resource to
bitTop+bitBottom.

Fopt—second byte: Initial corners

The second byte of the Fopt resource is the initial corner settings for your
transition. Choose an appropriate default. Be sure to only specify corners
that are allowed according to the first byte of the Fopt.

Fopt—third byte: Bit flags
The third byte of the Fopt has four bit flags.

Bit O: Bit zero should be set (using the bitPairs constant) if opposite corners
are always to be highlighted simultaneously. The figure below shows the
Doors transition, which uses this flag. Clicking the top arrow automatically
selects both the top and bottom arrows.

Bit 1: Bit one should be set (using the bitCustom constant) if the transition
has a custom parameters dialog—that is, it has more parameters than the
standard set given in the Premiere transition options dialog. Setting this bit
has two effects. First, Premiere knows your transition has custom
parameters, so when the user drags your transition into the Construction
window, Premiere automatically calls your transition with an esSetup
message at that time. See the description of bit four if you wish to default
your custom parameters instead of getting the initial esSetup call. The
second effect is that an extra button will appear on the bottom of the
transition options dialog:

Adobe Premiere Software Development Kit 83

Transitions

[] Show actual sources

[Custom Settings...]

When the user clicks this button, your SPFX will be called with the esSetup
selector. See the section below on the SPFX resource for details.

Bit 2: Bit two should be set (using the bitinvariant constant) if your
transition is time-invariant—that is, it is really a two-input filter, rather than
a transition. An example would be the Displace transition in Premiere, which
displaces pixels in source two based on the channel values in source one. For
normal transitions, this bit is set to zero.

Bit 3: Bit three should be set (using the bitNolstCall constant) only if you use
bitCustom and don’t want the initial esSetup call when your transition is
dragged into the Construction window. If there’s a reasonable set of default
values you can use for your custom parameters, set this bit along with
bitCustom so the user is not interrupted with your custom settings dialog.
Premiere’s Pinwheel transition is a good example of a transition that uses
this flag. It has a custom parameter for the number of wedges in the
pinwheel. However, it defaults this number to 8, and doesn’t bother the user
with a custom parameters dialog every time they drag the transition into the
Construction window.

Bit 5: Bit five should be set (using the bitUsesSource constant) if your
transition needs the callback function to work at setup time. For instance, a
“video echo” transition that uses past video frames would get those frames
by calling the callback function, and therefore should set this bit to one. The
callback procedure pointer is invalid at esSetup time if this bit is not set.

Fopt—fourth byte: Exclusive flag

The fourth byte of the Fopt resource is a boolean flag that tells Premiere
whether the corner arrows are to be exclusive. If this flag is set, the arrows
will act like radio buttons. If this flag is clear, the arrows will act like
checkboxes.

Fopt—fifth byte: Reversible

The fifth byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition is reversible, that is the transition can proceed either
from source 1 to source 2, or vice versa. If this flag is set, the transition
direction control will be shown.

& | |J—————Forward/reverse control

H|.B,| =

Fopt—sixth byte: Has edges flag

The sixth byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition has well-defined edges that can have borders or anti-
aliasing applied to them. Setting this flag will cause the anti-aliasing level
control, the border thickness slider, and the border color controls to be
shown.

Adobe Premiere Software Development Kit 84

Transitions

R L 1'\-.-;;
' . =l Anti-aliasing level control

Fopt—seventh byte: Movable start point flag

The seventh byte of the Fopt resource is a boolean flag that tells Premiere

whether the transition supports a movable start point. Setting this flag will
cause the start point to show up in the start portion of the options dialog.

Start=0%

Movable start point

I

Fopt—eighth byte: Movable end point flag

The eight byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition supports a movable end point. Setting this flag will
cause the end point to show up in the end portion of the options dialog.

End=100%

——Movable end point

P

!

FXDF -1

This resource provides a four-byte tag that tells Premiere how to map this
transition to one of the standard SMPTE wipes. Below is a table of valid
values for this resource. Premiere uses this information when assigning wipe
codes during the generation of an edit decision list.

Table 0-7: SMPTE Wipe Tags

Tag SMPTE wipe description

DISS Cross dissolve

TAKE “Take” or cut

WI00 Vertical wipe from the left edge
WI01 Horizontal wipe from the top edge
WI102 Vertical wipe from the right edge

Adobe Premiere Software Development Kit 85

Transitions

Table 0-7: SMPTE Wipe Tags

Tag SMPTE wipe description

WI03 Horizontal wipe from the bottom edge
WI04 Diagonal wipe from upper left corner
WI05 Diagonal wipe from upper right corner
WI06 Diagonal wipe from lower right corner
WI07 Diagonal wipe from lower left corner
WI08 Vertical split wipe

WI09 Horizontal split wipe

WI10 Horizontal/vertical split wipe

Wi11 Box wipe out from the center

WI12 Circular wipe from the center

WI13 Inset wipe from upper left

W14 Inset wipe from upper right

WI15 Inset wipe from lower right

WI16 Inset wipe from lower left

There may be one or more FXDF resources for a transition. If there is only
one FXDF, its resource ID must be -1. If the transition maps to different
SMPTE wipe code based on the direction arrows, there may be an FXDF
resource for each of the arrow settings, where the byte value of the arrow
flags is the ID of the associated FXDF resource (up to a theoretical maximum
of 256 FXDF resources). The following figure describes how the example
Wipe SPFX module uses multiple FXDF resources:

Arrows

>

L,
rt g

5 ey
- ot T

k&

R
B
8

PR

Bits Value FXDF
bitTop 1 ID 1,"WI01™
bitRight 2 ID 2,""WI102"
bitBottom 4 ID 4,""WI03™"
bitLeft 8 ID 8,""WI00"
bitUpperRight 16 ID 16,""WI05™

Adobe Premiere Software Development Kit 86

Transitions

Arrows Bits Value FXDF

:1‘“ ' ﬁ 1‘.-1?_ bitLowerRight 32 ID 32,"'WI06"
. i

‘“./ B 1‘.-3_ bitLowerLeft 64 ID 64,"WIO7"
: | -

' R x=.‘.’; bitUpperLeft 128 ID 128,"WI04"

SPFX/SPFx 1000

These resources contain the code for your transition, SPFX and SPFx
containing 68K and PowerPC code respectively. The entry point should be
declared like this:

pascal short Transition (short selector, EffectHandl e theData);

The return value should be noErr (0) if the transition completed without
error. Return any non-zero value to indicate an error. In such case, Premiere
will fill in the destination frame with black.

The selector can take the following values:

Table 0-8: Tansition Selector Values

Selector name Value Description

esExecute 0 Execute your transition.

esSetup 1 Execute your custom parameter dialog.
esExecute

The esExecute selector indicates that you should process the source frames
and generate a destination frame. The specsHandle (described below) will
contain your custom parameters, if any.

Important! The destination GWorld must be left with its foreground color set to
black and its background color set to white, otherwise subsequent operations with
in Premiere will draw incorrectly. At the end of your esExecute selector use this code:

Set GWr | d((*t heDat a) - >destination, nil);
For eCol or (bl ackCol or);
BackCol or (whi t eCol or);

Set GWr | d(ol dWwerl d, ol dDevi ce);
br eak;

87

Adobe Premiere Software Development Kit

Transitions

esSetup

The esSetup selector indicates that you should display your custom settings
dialog. This call should use the specsHandle to fill the dialog with initial
values, and should place the new values back into specsHandle. If no esSetup
call has ever been made (or stored in a project), specsHandle will be nil. In
such case you should provide reasonable default values, create a properly-
sized handle, and place the handle into (*theData)->specsHandle, then show
your dialog. Note that you will only get this message if you set bitCustom in
your Fopt resource.

The EffectRecord Structure

Your transition is passed a handle to an EffectRecord through parameter
theData. Here’s the structure of an EffectRecord:

typedef struct {

Handl e specsHandl e; /1l The specification handle
Guor | dPtr sourcel; /1l Source GMrid 1 (video track A)
Gnor | dPtr source2; /1l Source GMrid 2 (video track B)
GWorl dPtr destinati on; /] Destination GMrld

| ong part; [l part [/ total = %conplete

I ong total;

char preview ng; /1 In preview node?

char arrowFl ags; /1 Flags for direction arrows

char reverse; /1 1s transition being reversed?
char source; /1l Are sources swapped?

Poi nt start; /1 Spatial starting point

Poi nt end; /1 Spatial ending point

Poi nt center; /1l The reference center point
Handl e privateDat a; /1 Editor private data handl e
FXCal | BackProcPtr call Back; // Callback, not valid if nil

Bott| eRec *bottl eNecks; /1 Bottleneck callback routines
short version; /1l The version of this record
short si zeFl ags; /1l Frame processing flags

I ong fl ags; /1 Audio flags

short fps; /1l Frame rate in frames per second

} EffectRecord, **EffectHandl e;

The fields are used as follows:

specsHandle

The specsHandle field holds transition-defined data which contains all the
current settings for this transition. The transition normally creates this
handle when it gets a esSetup call. Premiere saves this handle in the project
file so that settings are restored when a project is reopened. This field is
only used by transitions that have custom parameters.

sourcel

The sourcel field is the GWorld pointer for source image 1 (normally
corresponding to the A video track). It will always be 32 bits deep.

source?2

The source?2 field is the GWorld pointer for source image 2 (normally
corresponding to the B video track). It too will always be 32 bits deep, and
the same size as sourcel.

destination

The destination field is the GWorld pointer for the destination image. This is
where you store the calculated frame on an esExecute call. It will always be

Adobe Premiere Software Development Kit 88

Transitions

32 bits deep and the same size as sourcel and source2. When processing the
two sources into the destination, the alpha channels of the sources may
contain useful data, and should be processed just like the red, green, and
blue channels. If the destination alpha channel is distorted or destroyed,
automatic anti-aliasing and colored bordering may malfunction for your
transition.

part

The part field tells you how far into the transition you are in frames. Part
varies from 0 to total (described next), inclusive.

total

The total field tells you how many frames the transition covers in total. By
dividing part by total, you can calculate the percentage of the transition
that you should perform for a given esExecute call.

previewing
The previewing field is a flag that is no longer supported. You may ignore its
value.

arrowFlags

The arrowFlags field gives you the corner flags (using the same bit
definitions described above in the Fopt resource section) as set by the user.

reverse

The reverse field is a flag telling you that Premiere is performing the
transition in reverse. Premiere automatically calls your transition with the
frames in the reverse order. The flag is provided for informational purposes,
normally you don’t need to do anything differently.

source

The source field is a flag telling you the Premiere has swapped the source
GWorlds (that is, you’re doing the transition from video track B-to-A instead
of A-to-B). The flag is provided for informational purposes, normally you
don’t need to do anything differently.

start

The start field is the start point of the transition as specified by the user.
You only look at this field if the “movable start point” flag is turned on in
the Fopt resource for your transition. This point is relative to the center
point described below.

end

The end field is the end point of the transition as specified by the user. You
only look at this field if the “movable end point” flag is turned on in the
Fopt resource for your transition. This point is relative to the center point
described below.

center
The center field is the normal center point for transitions that open and
close. The start and end fields described above are measured relative to
center.

Adobe Premiere Software Development Kit 89

Transitions

privateData

The privateData field is a handle of data that is private to Premiere. It is
passed to the frame-retrieval callback (described below) when you need to
get a frame from some other point in time.

callBack

The callBack field contains a pointer to a routine you can use to get past or
future frames from the source clips. This field is always available during the
esExecute call but is only valid during the esSetup call when the
bitUsesSource bit is set in the flags byte of the Fopt resource.
FXCallBackProcPtr is defined as follows:

typedef pascal short (*FXCall BackProcPtr) (
| ong frane,
short track,
CG af Ptr thePort,
Rect t heBox,
Handl e privateData);

The frame parameter is the desired frame, from 0 to total inclusive. The
track parameter is O for the A video track, 1 for the B video track. The
thePort parameter is the destination for the frame, normally a locally
allocated GWorld. The theBox parameter is the destination rectangle in
thePort. Finally, the privateData parameter is (*theData)->privateData.

Note that when a 68K plug-in is called from Power Mac Premiere, the
callback field actually contains a UPP rather than a PowerPC procedure
pointer.

bottleNecks

The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your transition.

version

The version field tells the version of this EffectRecord. Currently this field is
set to zero.

sizeFlags
The sizeFlags field gives you some information about the preview or output
options that are in effect. The following bit flags are of interest:

Table 0-9: sizeFlags

Flag Description

gvHalfv User has specified half-vertical processing

gvHalfH User has specified half-horizontal processing
gvFieldsEven User has specified field-based processing, even fields first
gvFieldsOdd User has specified field-based processing, odd fields first

To perform field processing, Premiere splits each frame into even and odd
fields (each image being half-height) and calls your transition once for each
field, then reassembles the two fields into a single frame. This allows
transitions such as wipes to have field-based, 60-position-per-second motion.
Beware that when field processing is turned on, (*theData)->total will be
twice as big, and each frame will be half-height. Many transitions must
special-case this situation in order to have the proper appearance.

Adobe Premiere Software Development Kit 90

Transitions

flags
The flags field contains audio flags. These are not used by transitions.

fps
The fps field gives the frame rate in frames-per-second, in case your
transition needs to know this information.

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for three
example SPFX modules.

Additive Dissolve

Similar to a cross dissolve, this transition adds the two images together using
a special QuickDraw transfer mode gradually through the duration of the
transition. This is a good example of a basic transition.

Cross Zoom

This is the source code for the Cross Zoom transition that ships with Adobe
Premiere. It supports movable start- and end-points and demonstrates the
use of the StretchBits bottleneck.

Wipe
This is a basic wipe transition that works from any of the eight directions. It
iIs a good basis for many region-based shaped wipes.

Adobe Premiere Software Development Kit 91

Video Filters

A video filter in Adobe Premiere takes a single source GWorld and processes
it into a destination GWorld.

Total

;Part

Source - VFIt mee-| Destination

Both GWorlds are always 32-bits deep. Video filters may be time-variant, and
the filter is given the total duration in frames of the filter and the current
frame number. Video filters may present a user interface and store
parameters that specify how they process frames. Premiere handles the
overhead of retrieving and storing frames.

Video filter modules are stored in files of type ‘VFIt’, with creator ‘PrMr’. The
name of the file is the name that Premiere will display in the filters dialog
list. Video filter files contain two kinds of resources which are listed below.
Following the table is a detailed description of each resource.

Table 0-10: Video Filter Resources

Type & ID Description
FXvs 1000 A two-byte version number stored as a short integer.
FItD 1000 An optional time-animation resource describing the format of your
settings data blob.
VFIt 1000 The video filter code itself (68K). The entry point is the resource’s first
byte.
VFIT 1000 The video filter code itself (PowerPC). The entry point is specified by the
PEF.
FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0001.

FItD 1000

This optional resource is used to cause Premiere to automatically add time
based effects to a filter. You would use it if your filter code does not
explicitly handle time based effects. It contains a variable length description
of your filter’s parameters (that is, the format of the data you choose to

Adobe Premiere Software Development Kit 92

Video Filters

store in the specsHandle field of the VideoRecord structure described
below).

If your filter does not directly support variability over time but such
functionality is meaningful, you can include a FItD resource in your filter’s
resource file. The presence of this type of resource makes Premiere enable
the Filter dialog box “Start” and “End” settings buttons and save a copy of
the specsHandle for each endpoint. When the execute message is sent to
your filter, Premiere uses the information in your FItD to interpolate
between the values in the two specsHandles over time and pass the plug-in a
single specsHandle with those calculated values.

Let’s look at an example specsHandle data structure and the associated FItD
resource:

typedef struct

{
| ong randonfteed,; /1 Random nunber seed for ny filter
short hori z; /1 The horizontal offset (user setting)
short vert; /1l The vertical offset (user setting)
float scale; /1l The scale factor (user setting)
| ong nmagi cNunber ; /1 The magi c nunber that ny filter uses

} MyFil terSpecs;

The randomSeed value is calculated once and stored, and we don’t want
Premiere to change it. The horiz, vert and scale fields are settings values that
the user sets with the filter’s settings dialog. We want Premiere to
interpolate those. The magicNumber field contains a magic number we use
in our filter calculation, which we don’t want Premiere to interpolate. So
here’s what our FItD resource would look like:

resource 'FItD (1000, "")

{
pdOpaque, 4, /1 Don't interpolate the random nunber seed
pdsShort, O, /'l Interpolate the short horiz val ue
pdsShort, O, /1 Interpolate the short vert val ue
pdFl oat, O, /1 Interpolate the float scale val ue
pdOpaque, 4, /1 Don't interpolate the magi c numnber

b

Each FItD element is a type followed by a repeat count. The repeat count is
only valid for the pdOpaque type and should be zero for all other types. To
keep Premiere from interpolating the variable randomSeed, we specified
that the first four bytes of our data structure are opaque by specifying
“pdOpaque, 4,”. For the other fields we’ve simply informed Premiere of the
data types. Note that the FItD must describe each parameter in the filter
data structure.

The valid type identifiers for the resource are:

/1 Descriptor for allowing filters to aninmate over tine. A structure of

/1 this type can be added to a 'VFIt', an '"AFlIt', or a PhotoShop filter to
/1 describe the data structure of its paraneters. Specify pdOpaque for any
/1l non-scalar data in the record, or data that you don't want Premiere to
/1 interpolate for you. Make the FLTD describe all the bytes of the

/1 paraneter block. Use ID 1.

e I e T R
/1l Specifies the type of the data
#def i ne pdOpaque 0x0000 /1l Opaque - don't interpolate this
/1 Followed by count of bytes to skip
/1 with pdOpaque, eg, pdOpaque, 4
#def i ne pdChar 0x0001 /1 Interpolate as signed byte
#def i ne pdShort 0x0002 /1 Interpolate as signhed short
#def i ne pdLong 0x0003 /1 Interpolate as signed |ong

#def i ne pdUnsi gnedChar 0x0004 // Interpol ate as unsigned byte
#def i ne pdUnsi gnedShort 0x0005 // Interpolate as unsigned short
#def i ne pdUnsi gnedLong 0x0006 // Interpolate as unsigned | ong

Adobe Premiere Software Development Kit 93

Video Filters

#defi ne pdExt ended 0x0007 /1 Interpolate as a double
#defi ne pdDoubl e 0x0008 /1 Interpolate as a double
#defi ne pdFl oat 0x0009 /'l Interpolate as a fl oat

VFIt /VFIT 1000

These resources contain the code for your video filter, VFIt and VFIT
containing 68K and PowerPC code respectively. The entry point should be
declared like this:

pascal short VideoFilter (short selector, VideoHandl e theData);

The return value should be noErr (0) if the filter completed without error.
Return any non-zero value to indicate an error. In such case Premiere will fill
the destination frame with black.

The selector can take the following values:

Table 0-11: Video Filter Selectors

Selector name Value Description

fsExecute 0 Execute your video filter.

fsSetup 1 Execute your settings dialog, if any.

fsDisposeData 2 Dispose of any instance data you may have created.
fsExecute

The fsExecute selector indicates that you should process the source frame
and generate a destination frame. The specsHandle (described below) will
contain all of your filter settings so you know how the source frame should
be processed to generate the destination frame.

Important! The destination GWorld must be left with its foreground color set to
black and its background color set to white, otherwise subsequent operations with
in Premiere will draw incorrectly. At the end of your esExecute selector use this code:

Set GWor I d((*t heDat a) - >destination, nil);
For eCol or (bl ackCol or) ;
BackCol or (whi t eCol or) ;

Set GWr | d(ol dWrl d, ol dDevi ce);
br eak;

fsSetup

The fsSetup selector indicates that you should display your filter settings
dialog box. You should use the information in the specsHandle to fill the
dialog with initial values, and should place the new values back into
specsHandle. If no fsSetup call has ever been made (or stored in a project),
specsHandle will be nil. In such case you should provide reasonable default
values, create a properly-sized handle, place that handle into specsHandle,
then show your dialog.

Adobe Premiere Software Development Kit 94

Video Filters

fsDisposeData

The fsDisposeData selector was added in Premiere 4.2. Premiere will send
this selector when it is time to dispose of any instance data you have have
created. See the new InstanceData member of the VideoRecord structure for
further information.

The VideoRecord Structure

Your video filter is passed a handle to a VideoRecord through the parameter
theData. Here’s the structure of a VideoRecord:

typedef struct

{
Handl e specsHandl g; /1 The specification handle
Gwor | dPtr source; /1 The source Gwrld
Gnor | dPtr destination; /1 The destination Ghrld
| ong part; /1 part/total = %onplete
| ong total;
char preview ng; /1 In preview node?
Handl e privateDat a; /1 Private data handl e
VFi | terCal |l BackProcPtr callBack; // Callback, invalid if nil
Bottl eRec *bottl eNecks; /1 Bottleneck call backs
short version; /1 Version of this record
short si zeFl ags; /1l Franme processing flags
| ong fl ags; /1 Audio flags
short fps; /1l Frame rate in franes/sec
Handl e | nst anceDat a /[l Newin 4.2 - Private data for filter

} VideoRecord, **VideoHandl e;

The fields are used as follows:

specsHandle

The specsHandle field holds filter-defined data which contain all the current
settings for this filter. The filter normally creates this handle when it gets an
fsSetup call. Premiere saves this handle in the project file so that settings are
restored when a project is reopened.

source

The source field is the GWorld pointer for the source image. It will always be
32 bits deep.

destination

The destination field is the GWorld pointer for the destination image. This is
where you store the calculated frame on an fsExecute call. It will always be
32 bits deep and the same size as source. When processing the source into
the destination, the alpha channel of the source may contain useful data,
and should be processed just like the red, green, and blue channels.

part

The part field tells you how far into the filter you are in frames. Part varies
from O to total (described next) inclusive.

total

The total field tells you how many frames the filter covers in total. By
dividing part by total, you can calculate the percentage of a time-variant
filter that you should perform for a given fsExecute call. Time-invariant
filters can ignore part and total.

Adobe Premiere Software Development Kit 95

Video Filters

previewing
The previewing field is a flag that is no longer supported. You may ignore its
value.

privateData

The privateData field is a handle of data that is private to Premiere. It is
passed to the frame-retrieval callback (described below) when you need to
get a frame from some other point in time.

callback

The callBack field contains a pointer to a routine you can use to get past or
future frames from the source clip. The VFilterCallBackProcPtr is defined as
follows:

typedef pascal short (*VFilterCallBackProcPtr) (
| ong frane,
CGafPtr thePort,
Rect *theBox,
Handl e privateData);

The frame parameter is the desired frame, from 0 to total inclusive. The
thePort parameter is the destination for the frame, often a locally allocated
GWorld. The theBox parameter is the destination rectangle in thePort.
Finally, the privateData parameter is (*theData)->privateData.

Note that when a 68K plug-in is called from Power Mac Premiere, the
callback field actually contains a UPP rather than a PowerPC procedure
pointer.

bottleNecks

The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your video filter.

version

The version field tells the version of this VideoRecord. For Premiere 4.2, this
field is set to 2.

sizeFlags
The sizeFlags field gives you some information about the preview or output
options that are in effect. The following bit flags are of interest:

Table 0-12: sizeFlags

Flag Description

gvHalfv User has specified half-vertical processing

gvHalfH User has specified half-horizontal processing
gvFieldsEven User has specified field-based processing, even fields first
gvFieldsOdd User has specified field-based processing, odd fields first

Beware that when field processing is turned on, (*theData)->total will be
twice as big, and each frame will be half-height. Some video filters must
special-case this situation in order to have the proper appearance. See the
description of this field in the Transitions chapter for more information.

flags

The flags field contains audio flags. These are not used by video filters.

Adobe Premiere Software Development Kit 96

Video Filters

fps
The fps field gives the frame rate in frames-per-second, in case your filter
needs to know this information.

InstanceData

New in Premiere 4.2, this field allows a plug-in to have Premiere save and
return some private data between invocations. You are responsible for
allocating and freeing any memory used with this field. You would probably
allocate memory for this field when getting an fsSetup selector, but you
must deallocated it when getting an fsDisposeData. To utilize this new field,
the version field above must be set to 2.

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for a video filter
module that you can use as an example of how to write your own.

Video Noise

This is the source code for the Video Noise filter that ships with Adobe
Premiere. It is a good example of a basic video filter with no settings dialog.

Burn Time Code

This is very similar to the source code for the Burn Time Code filter that ships
with Adobe Premiere. It gives a good example of a fairly sophisticated
settings dialog and uses some of the simpler timecode routines from UtilLib.

Adobe Premiere Software Development Kit 97

Audio Filters

An audio filter in Adobe Premiere takes a source buffer of audio and
processes it into a destination buffer.

Total samples

;Sample number

Source Destination
u |* AFIt » st :
ATATAVATATWAFAY RYAYAFATATAWAY

Both buffers will be the same size. Audio filters may be time-variant, and the
filter is given the total duration in samples of the filter and the sample
number of the first sample in the source buffer. Audio filters may present a
user interface and store parameters that specify how they process the audio.
Premiere handles the overhead of retrieving and storing sound data.

Audio filter modules are stored in files of type ‘AFIt’, with creator ‘PrMr’.
The name of the file is the name that Premiere will display in the filters
dialog list. Audio filter files contain two kinds of resources which are listed
below. Following the table is a detailed description of each resource.

Table 0-13: Audio Filter Resources

Type & ID Description

FXvs 1000 A two-byte version number stored as a short integer.

FItD 1000 An optional time-animation resource describing the format of your
settings data blob.

AFIt 1000 The audio filter code itself (68K). The entry point is the resource’s first
byte.

AFIT 1000 The audio filter code itself (PowerPC). The entry point is specified by the
PEF.

FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0001.

FItD 1000

This optional resource is a variable-length description of your filter’s data
blob (that is, the format of the data you choose to store in the specsHandle
field of the VideoRecord structure described below). If your filter does not
directly support variability over time but such functionality is meaningful,
you can include a FItD resource in your filter’s resource file. The presence of

Adobe Premiere Software Development Kit 98

Audio Filters

this type of resource makes Premiere enable the “Start” and “End” settings
buttons in the Filter dialog box. When it comes time to filter audio using
your filter, Premiere uses the information in your FItD to interpolate the
values in your settings structure over time.

For more information about FItD resources, see the description in the
chapter Video Filters.

AFIt/AFIT 1000

These resources contain the code for your audio filter, AFIt and AFIT
containing 68K and PowerPC code respectively. The entry point should be
declared like this:

pascal short AudioFilter (short selector, AudioFilter theData);

The return value should be noErr (0) if the filter completed without error.
Return any non-zero value to indicate an error. In such case Premiere will fill
the destination frame with black.

The selector can take the following values:

Table 0-14: Audio Filter Selectors

Selector name Value Description

fsExecute 0 Execute your audio filter.

fsSetup 1 Execute your settings dialog, if any.

fsDisposeData 2 Dispose of any instance data you may have created.
fsExecute

The fsExecute selector indicates that you should process the source buffer
and generate a destination buffer. The specsHandle (described below) will
contain all of your filter settings so you know how the audio data should be
processed to generate the destination data.

fsSetup

The fsSetup selector indicates that you should display your filter settings
dialog box. You should use the information in the specsHandle to fill the
dialog with initial values, and should place the new values back into
specsHandle. If no fsSetup call has ever been made (or stored in a project),
specsHandle will be nil. In such case you should provide reasonable default
values, create a properly-sized handle, place that handle into specsHandle,
then show your dialog.

fsDisposeData

The fsDisposeData selector was added in Premiere 4.2. Premiere will send
this selector when it is time to dispose of any instance data you have have
created. See the new InstanceData member of the AudioRecord structure for
further information.

Adobe Premiere Software Development Kit 99

Audio Filters

The AudioRecord Structure

Your audio filter is passed a handle to an AudioRecord through the
parameter theData. Here’s the structure of an AudioRecord:

typedef struct

{
Handl e specsHandl e; /'l The specification handle
Ptr source; /'l The source buffer
Ptr destination; /'l The destination buffer
| ong sanpl enum /'l First sanple numnber
| ong sanpl ecount; /1 Num of sanples in source
char preview ng; /1 1In preview node?
Handl e pri vat eDat a; /'l Private data handl e
AFi |l terCal | BackProcPtr call Back; // Callback, invalid if nil
| ong total sanpl es; /'l Total sanples in clip
short fl ags; /1 Audio flags
I ong rate; /] Sanple rate, 16.16 Fixed
Bottl eRec *bottl eNecks; /1 Bottleneck call backs
short version; /'l Version of this record
| ong extraFl ags; /1 O her flags
short fps; /'l Frame rate in franmes/sec
Handl e | nstanceDat a /Il Newin 4.2 - private data for filter

} Audi oRecord, **AudioFilter;

The fields are used as follows:

specsHandle

The specsHandle field holds filter-defined data which contain all the current
settings for this filter. The filter normally creates this handle when it gets an
fsSetup call. Premiere saves this handle in the project file so that settings are
restored when a project is reopened.

source

The source field points to the source audio buffer. This buffer contains
sampleCount samples, starting at sampleNum in the clip being processed.
During an fsSetup call, this buffer is preloaded with a certain amount of the
clip’s audio data (specified by a user preference), already filtered by any
previous audio filters in the chain. The default preview duration is 3 seconds.
You can process this sound into the destination buffer and use the Sound
Manager to loop the destination buffer. This allows your audio filter to
perform a “preview audio” function. See the Pan filter example for details
about how to do this. At esExecute time, this buffer contains the data you
are to filter.

destination

The destination field points to the destination audio buffer. This is where
you store the calculated audio data on an fsExecute call. It will always be the
same size as source. At esSetup time this buffer is also allocated and you can
use it as a processing buffer

sampleNum

The sampleNum field tells you the sample number of the first sample in the
source buffer.

Important! This value is in bytes, so you need to divide byte a “bytes-per-sample”
value to determine an actual sample number. The table below shows the possible
number of bytes-per-sample based on the value of two bits in the flags field described

Adobe Premiere Software Development Kit 100

Audio Filters

below:

Table 0-15: sampleNum

Flags bits Bytes per sample
0 1 (8-bit mono)
gaStereo 2 (8-bit stereo)
gal6Bit 2 (16-bit mono)
gal6Bit | gaStereo 4 (16-bit stereo)

sampleCount

The sampleCount field tells you how many bytes are in source and
destination. Note that, like sampleNum, you need to divide by bytes-per-
sample to determine the actual sample count in samples.

previewing
The previewing field is a flag that is no longer supported. You may ignore its
value.

privateData

The privateData field is a handle of data that is private to Premiere. It is
passed to the audio-retrieval callback (described below) when you need to
get audio from some other point in time.

callback

The callBack field contains a pointer to a routine you can use to get past or
future audio data from the source clip. The AFilterCallBackProcPtr is defined
as follows:

typedef pascal short (*AFilterCall BackProcPtr) (
| ong sanpl e,
| ong count,
Ptr buffer,
Handl e privateData);

The sample parameter is the desired starting sample number, from 0 to
totalsamples - 1 inclusive, in bytes. The count parameter specifies the
number of bytes you wish to retrieve. The buffer parameter is the
destination buffer for the audio data, which is usually a locally allocated.
Finally, the privateData parameter is (*theData)->privateData.

Note that when a 68K plug-in is called from Power Mac Premiere, the
callback field actually contains a UPP rather than a PowerPC procedure
pointer.

totalsamples

The totalsamples field tells you the total number of bytes in the filtered clip.
Divide by bytes-per-sample to determine the total number of samples.

flags
The flags field describes the audio data in the source buffer. It may have
either of the following two flags set:

#defi ne gaStereo 0x0100
#define gal6Bit 0x0200

Adobe Premiere Software Development Kit 101

Audio Filters

Using these flags you can tell the number of bytes in the buffer. Your output
should be in the same format.

rate

The rate field provides the sample rate as a integer value in samples per
second. For instance, if a clip contained sound data at the standard
Macintosh sample rate, rate would contain 22254. This is for informational
purposes in case your filter needs it.

bottleNecks

The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your audio filter.

version
The version field tells the version of this VideoRecord. For Premiere 4.2, this
value should be 2.

extraFlags
The extraFlags field is a flags field for future use by Adobe. Currently it is set
to zero.

fps
The fps field gives the frame rate in frames-per-second, in case your filter
needs to know this information.

InstanceData

New in Premiere 4.2, this field allows a plug-in to have Premiere save and
return some private data between invocations. You are responsible for
allocating and freeing any memory used with this field. You would probably
allocate memory for this field when getting an fsSetup selector, but you
must deallocated it when getting an fsDisposeData. To utilize this new field,
the version field above must be set to 2.

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for an audio
filter module that you can use as an example of how to write your own.

Backwards [Audio]

This is the source code for the Backwards [Audio] filter that ships with
Adobe Premiere. It is a good example of a basic audio filter with no settings
dialog, and shows how to use the callBack procedure to retrieve audio from
a different point in the clip.

Pan

This is the source code for the Pan filter that ships with Adobe Premiere. It
gives an example of how to implement a “Preview Sound” checkbox in your
settings dialog and how to specify an ‘FItD’ animation resource.

Adobe Premiere Software Development Kit 102

Data Export Modules

A data export module in Adobe Premiere is called when the user opens some
kind of clip window and chooses an item from the Export submenu of the
File menu. The export module’s job is to export the given clip to some other

format.
Source e ExpD Destination)

The export module tells Premiere whether it can export audio, video, or
both. It is provided with information about the source clip and two callback
routines to allow it to retrieve audio and video from the clip. Export
modules normally put up a modal dialog asking the user for appropriate
export parameters, then put up a standard file dialog to request a
destination file. They then export the source clip into another file format.

Adobe Premiere export modules are not limited to file-format-conversion
type export operations. Premiere’s “Print To Video” export module is a good
example of a different kind of module, where the output is to the screen
rather than to a file.

Export modules are stored in files of type ‘ExpD’, with creator ‘PrMr’. The
name of the file is the name that Premiere will display in the Export
submenu of the File menu. Data export files contain two kinds of resources
which are listed below. Following the table is a detailed description of each
resource.

Table 0-16: Data Export Module Resource IDs

Type & ID Description

FXvs 1000 A two-byte version number stored as a short integer.

FLAG 1000 A two-byte flags word that tells the capabilities of the data export
module.

ExpD 1000 The data export code itself (68K). The entry point is the resource’s first
byte.

Expd 1000 The data export code itself (PowerPC). The entry point is specified by the
PEF.

FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0001.

Adobe Premiere Software Development Kit 103

Data Export Modules

FLAG 1000

This resource tells Premiere whether the data export module can export
video, audio, or both. Premiere uses this information to dim or undim the
export module’s menu item in the Export submenu based on the type of clip
that is in the front window. The structure of a FLAG resource is shown below
in Rez format, along with some bit values you’ll use with the definition:

type ' FLAG {
integer; // Capability flags
b

#def i ne bit CanDoVi deo 0x8000 // This nodul e can export video clips
#def i ne bit CanDoAudi o 0x4000 // This nodul e can export audio clips

For example, if your export module can export both audio and video, you’d
make a FLAG resource containing bitCanDoVideo + bitCanDoAudio.

ExpD/Expd 1000

These resources contain the code for your data export module, ExpD and
Expd containing 68K and PowerPC code respectively. The entry point should
be declared like this:

pascal short DataExportMdul e (short sel ector, DataExportHandl e theData);

The return value is currently ignored, but you should return noErr (0) for
future compatibility.

The selector can take the following values:

Table 0-17: Data Export Module Selectors

Selector name Value Description
edExecute 0 Execute your data export process.
edExecute

The edExecute selector indicates that you should perform your data export
function. You may use the information in the DataExportRec (described
below) to help you.

The DataExportRec Structure

Your data export module is passed a handle to a DataExportRec through the
parameter theData. Here’s the structure of a DataExportRec:

Adobe Premiere Software Development Kit 104

Data Export Modules

typedef struct {

| ong markers[12]; /Il Cip markers (0 =in, 1 = out)

| ong nunf ranes; /1l Nunber of frames in the clip
short franerate,; /'l Frames/second of source material
Rect bounds; /1 Video box, enpty if no video
short audfl ags; /1 Audio flags, zero if no audio

| ong audrat e; /1 The audio rate in Hz

Get Vi dCal | Back getVideo; // Video reader call back
Get AudCal | Back get Audi o; // Audio reader call back
Handl e pri vat eDat a; /'l Private data for above routines
| ong speci al Rat e; /'l Special rate
} Dat aExportRec, **DataExportHandl e;

The fields are used as follows:

markers

The markers field is an array of twelve clip markers. The value of markers[0]
is the clip’s in-point, markers[1] its out-point. Entries 2-11 are the numbered
markers 0-9. The marker values are in the time units specified by the
framerate field (described below). Note: the markers array is vestigial. Now
Premiere supports unnumbered markers. Use the UtilLib.o functions
CountClipMarkers and GetClipMarker to access the markers from index 2 on.
See the Storyboard Image example source code for details.

numframes

The numframes field specifies the duration of the source material in the
units specified by the framerate field.

framerate

The framerate field gives the frame rate in frames per second at which this
export operation is being performed. It corresponds to the Time Base
preference setting for clip windows.

bounds

The bounds field specifies bounds for the video portion of the source clip’s
data. If it is an empty rectangle, there source clip contains no video.

audflags

The audflags field describes the audio data in the source clip. It may have
either of the following two flags set:

#defi ne gaStereo 0x0100
#define galéBit 0x0200

These flags are the same as are used in audio filters and with the audio
bottleneck routines.

audrate

The rate field provides the sample rate as a integer value in samples per
second. For instance, if a clip contained sound data at the standard
Macintosh sample rate, audrate would contain 22254. If audrate is O, the
source clip contains no audio.

getVideo

The getVideo field contains a pointer to a routine you can use to get video
data from the source clip. GetVidCallBack is defined as follows:

Adobe Premiere Software Development Kit 105

Data Export Modules

typedef pascal short (*GetVidCall Back) (
| ong frane,
GWrl dPtr thePort,
Rect *t heBox,
Handl e privateData);

The frame parameter is the desired frame in the units defined by the
framerate field. For example, you would use (*theData)->markers[0] to
retrieve the frame at the in-point. The thePort parameter is the destination
for the frame, usually a locally allocated GWorld, which must be 32-bits
deep. The theBox parameter is the destination rectangle in thePort. Finally,
the privateData parameter is (*theData)->privateData.

Note that when a 68K plug-in is called from Power Mac Premiere, the
getVideo field actually contains a UPP rather than a PowerPC procedure
pointer.

getAudio

The getAudio field contains a pointer to a routine you can use to get audio
data from the source clip. The GetAudCallBack is defined as follows:

typedef pascal short (*GetAudCal |l Back) (
| ong second,
short formatFl ags,
Ptr buffer,
Handl e privateData);

The second parameter is the desired second (like second #0, second #1, etc.)
The formatFlags parameter specifies the sample format for the retrieved
samples. Premiere will perform rate- and format-conversion for you. The
following constants may be used in the formation of your formatFlags value:

#defi ne afl agbKHz 0x0001 // Predefined sanple rates
#defi ne afl agllKHz 0x0002
#defi ne afl ag22KHz 0x0004
#defi ne afl ag44KHz 0x0008

#def i ne afl agSpeci al 0x0040 // Set to get audio at an arbit. rate
#def i ne afl agStereo 0x0100 // Set if you want stereo

#defi ne afl agl6Bit 0x0200 // Set if you want 16-bit

#defi ne afl agDropFrane 0x0400 // Set if you want drop-frane

The aflagSpecial flag allows you to request audio at an arbitrary sample
rate. Set the specialRate field of the DataExportRec to a sample rate in Hz,
then call the getAudio callback with the aflagSpecial flag set to have
Premiere resample the clip’s audio to your specified rate. For instance, if you
wanted Premiere to give you audio sampled at 22050 samples per second, 8-
bit stereo, you’d make a call like this:

(*theDat a) - >speci al Rate = 22050;
(*(*theDat a) - >get Audi 0)) (cur Second, afl agSpeci al + afl agStereo, audi oBuf,
(*theDat a) - >pri vateDat a) ;

The buffer parameter is the destination buffer for the audio data. Following
is a table showing you how big your buffer should be based on the flag
values:

Table 0-18: Audio Buffer Sizes

. 8-bit 16-bit 16-bit
Sample rate flags 8-bit mono
stereo mono stereo
aflagbKHz 5563 11126 11126 22252
aflag5KHz + aflagDropFrame 5558 11116 11116 22232
aflagl1KHz 11127 22254 22254 44508

Adobe Premiere Software Development Kit 106

Data Export Modules

Table 0-18: Audio Buffer Sizes

. 8-bit 16-bit 16-bit
Sample rate flags 8-bit mono
stereo mono stereo
aflagl1KHz + aflagDropFrame 11116 22232 22232 44464
aflag22KHz 22254 44508 44508 89016
aflag22KHz + aflagDropFrame 22232 44464 44464 88928
aflagd4KHz 44100 88200 88200 176400
aflag44KHz + aflagDropFrame 44056 88112 88112 176224

Finally, the privateData parameter is (*theData)->privateData.

Note that when a 68K plug-in is called from Power Mac Premiere, the
getAudio field actually contains a UPP rather than a PowerPC procedure
pointer.

privateData

The privateData field is a handle of data that is private to Premiere. It is
passed to the getVideo and getAudio callbacks.

specialRate

The specialRate field is used when you are calling the getAudio callback to
retrieve audio at an arbitrary sample rate. You store the desired sample rate
in Hz in this field, then call getAudio. See the description of the getAudio
callback above for more information.

Relevant Routines in the Utility Library

There are several routines in UtilLib that will make writing a data export
module easier. See the definitions of the GetExport... routines, the clip
routines, and the marker routines in the Premiere Specific Routines section
of The Utility Library chapter for details.

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for two data
export modules that you can use as examples of how to write your own.

Flattened Movie

This is the source code for the Flattened Movie data export module that
ships with Adobe Premiere. Given a QuickTime movie clip, it creates a
“flattened” QuickTime movie (one which contains all its data in the data
fork, such that it can be used on other computer platforms). This module
gives you examples of how to use the GetExport utility library routines and
how to write a QuickTime-specific export module.

Storyboard Image

This is the source code for the Storyboard Image data export module that
ships with Adobe Premiere. Storyboard Image exports video clips. It puts up
a dialog allowing the user to arrange frames in the output picture file, then
it generates one or more PICT files containing the in-point frame, any

Adobe Premiere Software Development Kit 107

Data Export Modules

marked frames, and the out-point frame. This example shows you how to use
the getVideo callback and shows some examples of calls to the utility library.

Adobe Premiere Software Development Kit 108

EDL Export Modules

An EDL export module in Adobe Premiere is called when the user chooses an
EDL export item from the Export submenu of the File menu. The export
module’s job is to export the current project into a text edit decision list
(EDL) format. Usually these EDL text files are used to drive a hardware
device, such as a video switcher like the CMX 3600.

- Edit Decision List
Project

HEEN
O] | eov

Il
LI

The EDL export module is provided with a nested, block-formatted data
structure that describes the project that the user has assembled in Premiere’s
Construction window. Export modules normally unroll this data structure
and generate a text file. It is also possible for an EDL module to directly
control a hardware device to perform autoassembly of the project from
source tapes.

EDL export modules are stored in files of type ‘ExpM’, with creator ‘PrMr’.
The name of the file is the name that Premiere will display in the Export
submenu of the File menu. EDL export files contain at least the resources
which are listed below. Following the table is a detailed description of each
resource.

Table 0-19: EDL Export Module Resource IDs

Type & ID Description

FXvs 1000 A two-byte version number stored as a short integer.

ExpM 1000 The EDL export code itself (68K). The entry point is the resource’s first
byte.

Expm 1000 The EDL export code itself (PowerPC). The entry point is specified by the
PEF.

NOTE: Any other resources contained in an EDL export module’s resource
file should have IDs in the range 600 to 999.

FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0001.

Adobe Premiere Software Development Kit 109

EDL Export Modules

ExpM/Expm 1000

These resources contain the code for your EDL export module, ExpM and
Expm containing 68K and PowerPC code respectively. The entry point should
be declared like this:

pascal short EDLExportMdul e (short sel ector, ExportHandl e theData);

The return value is currently ignored for the exExecute message but is used
with the exTrue30fps message. In order to ensure future compatibility, you
should return noErr (0) from your exExecute message.

The selector can take the following values:

Table 0-20: EDL Export Module Selectors

Selector name Value Description

exExecute 0 Execute your EDL export process.

exTrue30fps 1 Tell Premiere whether you want edits in 29.97 or 30 fps.
exExecute

The exExecute selector indicates that you should perform your EDL export
function. You will use the information in the ExportRecord (described below)
to generate your list.

exTrue30fps

The exTrue30fps selector is made just before the exExecute call. If you return
a result code of 1, Premiere passes all of the data in the project at 30 frames
per second. If you return 0, Premiere converts all of the times to 29.97
frames per second, which is the frame rate at which color video actually
runs. Normally an EDL export module should defer such time conversion to
Premiere rather than attempting it within the module.

The ExportRecord Structure

Your EDL export module is passed a handle to a ExportRecord through the
parameter theData. Here’s the structure of a ExportRecord:

typedef struct

{
Handl e dataHandl e; // The project data handl e
short tineBase; [l The current default tinebase
Ptr project Nane; /1l A pointer to current project name

} ExportRecord, **ExportHandl e;

The fields are used as follows:

dataHandle

The dataHandle field contains a hierarchical block of data which describes
everything about an Adobe Premiere project. This format is described in
detail below in the section entitled The EDL Project Data Format.

timeBase

The timeBase field tells your EDL export module the basic frame rate. It will
be 24, 25, or 30. When timebase is 30, the actual time base depends on your

Adobe Premiere Software Development Kit 110

EDL Export Modules

response to the exTrue30fps message. If you returned 0 in response to the
exTrue30fps message, the actual rate is 29.97; if you returned 1, the rate is
30.00.

projectName
The projectName field gives you with the name of the project. This is usually
used as the basis of the default name of an output EDL text file.

The EDL Project Data Format

When your EDL export module gets an exExecute message, the entire current
Premiere project will be handed to you via the dataHandle field of the
ExportRecord. The data is in a hierarchical, block-structured format. Each
block has the following structure:

typedef struct

{

| ong si ze; /'l Total block size, wstatic data & sub- bl ocks

|l ong dataSize; // The static data size for this block

| ong type; /1l The block type (basically an OSType)

| ong thel D /1 Block IDor O for blocks that don’t need an ID
} Bl ockRec;

Following the header is a block of local static data owned by this block of
the size given in the dataSize field of the BlockRec. Following the local static
data is a series of zero or more sub-blocks, each with their own block
headers (and potentially their own data chunks and sub-blocks). The types
and IDs for the currently defined blocks are listed in the following table:

Table 0-21: EDL Type and ID Blocks

Type ID | Parent @ Data Description

'BLOK 0 none L-wrk strt, L- Container for everything
wrk end, sub-
blks

'TRKB' 0 BLOK track blocks Container for all of the tracks

'TRAK’ ID BLOK S-flags, TREC Contains all of the blocks for an entire track
blocks

'FVID' 0 TRAK none Flag: track contains video records

"FSUP" 0 TRAK none Flag: track contains superimpose records

'FAUD’ 0 TRAK none Flag: track contains audio records

'AMAP' 0 FAUD S-audio Bits indicate target audio tracks
mapping bits

'FF_ X' 0 TRAK none Flag: track contains F/X records

'TREC' n TRAK S-clipID, L-strt, L- | Contains the blocks for a single track item
end, sub-blks

'RBND' 0 TREC S-max, RPNT [The rubber band info for a track item]
blocks

'RPNT’ 0-n | RBND L-h, S-v Rubber band point

'FXOP* 0 TREC C-crnr, C-dir, S- [The options controlling F/X options]
strt, S-end, blks

'FXDF 0 FXOP OSType The base type of the effect

'EDGE’ 0 FXOP S-thickness, [Describes edge thickness]
COLR block

Adobe Premiere Software Development Kit 111

Table 0-21: EDL Type and ID Blocks

EDL Export Modules

Type ID | Parent @ Data Description
'MPNT' 0 FXOP Point [Reference point for next two types]
'SPNT" 0 FXOP Point [User specified open point]
'EPNT' 0 FXOP Point [User specified close point]
'OVER' 0 TREC S-type, info [The parameters for an overlay item]
blocks
'COLR’ 0 OVER, RGBColor [Key or fill color]
FILE
'SIMI* 0 OVER S-similarity [Similarity value]
'BLND’ 0 OVER S-blend [Blend value]
'THRS® 0 OVER S-threshold [Threshold value]
'CUTO! 0 OVER S-cutoff [Cutoff value]
"ALIA' 0 OVER S-level [Anti-aliasing level]
'SHAD’ 0 OVER none [Flag: shadowing is on]
'RVRS' 0 OVER none [Flag: key is reversed]
'"GARB' 0 OVER R-ref rect, point | Garbage matte points
blocks
'PONT' 0-n | GARB, Point
RBND
'MATI" 0 OVER S-clipID [The ID of the clip describing an overlay Matte]
"VFLT' 0 TREC sub-blocks [Followed by individual filter blocks]
"AFLT 0 TREC sub-blocks [Followed by individual filter blocks]
'FILT" 0-n | VFLT, S-filelD, data File ID followed by an opaque data block
AFLT block
'MOTN' 0 TREC R-ref rect, sub [Record giving motion path for a track item]
blocks
'SMTH* 0 MOTN none Flag: motion path is smoothed
'"MREC’ 0-n | MOTN S-zoom, P-spot, Describes each motion point
P-dest[4]
'DATA' 0 any data block [Generic block for storing parm handles]
'CLPB’ 0 BLOK clip blocks Contains all of the clip blocks
'CLIP ID CLPB S-filelD, L-in, L- The descriptive info for a clip
out
'MARK" 0-9 | CLIP L-location [For set markers, defines the markers]
'LOCK® 0 CLIP none [Flag: clip has locked aspect]
'RATE' 0 CLIP S-rate * 100 [Defines a rate other than 1.00]
‘FILB’ 0 BLOK file blocks Contains all of the file blocks
'FILE’ ID FILB info blocks The descriptive blocks for a file
'MACS' 0 FILE FSSpec The Mac file spec
'MACP" 0 FILE string The full Mac pathname
'FRMS’ 0 FILE L-#frames [Number of frames for a file w/content]
'VIDI' 0 FILE L-video frame, [Describes the video portion of the file]
S-depth
'AUDI' 0 FILE S-aud flags, L- [Describes the audio portion of the file]
aud rate

Adobe Premiere Software Development Kit

112

Table 0-21: EDL Type and ID Blocks

EDL Export Modules

Type ID | Parent @ Data Description
'TIMC' 0 FILE timecode [Gives the timecode for the first file frame]
'TIMB® 0 FILE L-frame, C- [Specifies the binary timecode, as above]
dropframe, C-
fmt
'REEL' 0 FILE Str-reel name [String giving the source reel for the file]

Abbreviation

Flag:
[...]

Description

char
short
long
Point
Rect

If block is present, condition is true

Optional block

Many of the blocks have an associated structure that describes their
contents. Those are listed below:

Adobe Premiere Software Development Kit

113

typedef struct
{
long start;
| ong end;
} Rec_BLXK

typedef struct

{
short filelD

I ong in;
| ong out;
} Rec_CLIP;

typedef struct

{
short clipl D;
long start;
| ong end;

} Rec_TREC

typedef struct
{

short zoom
short tine;

short rotation;

short del ay;
Poi nt spot;
} Rec_MREC

typedef struct
{

unsi gned char corners;
char direction;

short startPercent;
short endPercent;

} Rec_FXOP

typedef struct
{
| ong h;
short v;
} Rec_RPNT;

typedef struct
{

Rect frame
short depth;
} Rec_VID;

typedef struct
{

I ong frames

char dropfrane

char fornmat;
} Rec_TI MB;

11
11

11
11
11

11
11
11

11
11
11
11
11

11
11
11
11

11
11

11
11

11
11
11

Wipe Code Details

EDL Export Modules

Starting position for the work area
Endi ng position for the work area

The dependent file ID
The IN point within the source material
The OQUT point within the source nmaterial minus 1

The dependent clip ID
The clip starting position
The clip ending position

Zoom factor 1 to 400, 100 is nornal

Time location 1 to 1000

Rotation factor -360 to 360, 0 is nornal
Del ay factor 0 to 100, O is nornal

The center point for the image at this point

User direction flags, one bit each
Direction flag, 0 = A->B, 1 = B->A
Starting percentage tinmes 100
Endi ng percentage tines 100

Horiz (time) loc of band point
Vertical (anplitude/level) |oc of band point

Boundi ng frane for video data
Bit depth for video data

Bi nary franme count
true = DF, false = NDF
true=NTSC(30), false=PAL(25), 2=Filn(24)

The EDL export modules that ship with Adobe Premiere allow the user to set
up wipe codes for use in their EDL text files. The user can edit these wipe
codes using the Wipe Code editor dialog, which is accessible from the
standard save dialog that is presented by the EDL plug ins, shown below:

Adobe Premiere Software Development Kit 114

EDL Export Modules

ERL [gt
Tilla for Ihis EOL=
St Theme el |I=s'00:T0 | 01:00:00:00 = n
et
AUt Procassbuye [el Folieme (180 7] .
s
@ Cxraants B-roll [B-roll D eebarats s |m :
[rinra’ H [T
[g G, | | Gance | E

| Load... | | 48us... | | DmrBullx] | Cancad | ITI

You may wish to style your EDL save dialog after the one shown above. To
facilitate having a “Wipe Codes...” button, Premiere provides a utility
routine called EditWipeCodes. To put up the wipe code editor dialog (the
dialog on the right), do the following:

switch (itenmHit)

{
case kOKButton:

case kW peCodesButt on:
Edi t W peCodes() ;
Set Port (nyDi al og) ;
br eak;

}

In the course of generating an EDL text output file, you should use the wipe
codes that have been assigned by the user. To access these wipe codes,
Premiere provides a utility routine called GetWipeCodes. To retrieve the
user’s wipe codes, use the following code:

{
| ong wi peCodes][20];

Get W peCodes(codes) ;

}

The array will be filled with the user’s wipe codes. For example, if the wipe
codes were set as shown in the picture above, wipeCodes[0] would equal 'D ’,
wipeCodes[1] would equal ‘C ’, wipeCodes[2] would equal ‘W000’, and so on.

Relevant Routines in the Utility Library

There are a few routines in UtilLib that will make writing an EDL export
module easier. See the definitions of MakeWindowForTextFile,
GetWipeCodes, EditWipeCodes, and the block routines in the Premiere
Specific Routines section of The Utility Library chapter for details.

Adobe Premiere Software Development Kit 115

EDL Export Modules

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for an EDL
export module that you can use as an example of how to write your own.

Generic EDL

This is the source code for the Generic EDL export module that ships with
Adobe Premiere. It contains code to recursively unroll the project data
handle and parse the blocks. The source for this module contains a set of
block utility routines that greatly simplify the process of generating a text
EDL list.

Adobe Premiere Software Development Kit 116

Zoom Modules

A zoom module in Adobe Premiere is called when the user chooses the
“Hardware Zoom” from the Zoom popup menu and/or chooses a mode from
the “Screen Mode” menu in the Print To Video dialog. Zoom modules handle
hardware-specific details of zooming and video card mode-switching.

-—>
.

[Frint Ta Pides S|

Calar hars for[0 | saconds

Mk acreew Tor PecondE

O 2oom seruan:| dofwarg

Seraan Mode:|_[mmaat v —> ZooM —>

[L gt
[Ac:tiests raeording dock

The zoom module is provided with information about the GDevice to be
zoomed.

Zoom modules are stored in files of type ‘ZooM’, with creator ‘PrMr’. The
name of the file is never shown to the user. Zoom module files contain at
least the resources which are listed below. Following the table is a detailed
description of each resource.

Table 0-22: Zoom Module Resource IDs

Type & ID Description

ZooM 1000 The zoom module code itself (68K). The entry point is the resource’s first
byte.

Zoom 1000 The zoom module code itself (PowerPC). The entry point is specified by
the PEF.

ZooM/Zoom 1000

These resources contain the code for your zoom module, ZooM and Zoom
containing 68K and PowerPC code respectively. The entry point should be
declared like this:

pascal short ZoomMvbdul e (short sel ector, ZoonHand theData);

The return value is checked when the selector is cmndCanZoom, cmdCanDo,
and cmdGetMode. For the other selectors, the return value is ignored. In
those cases you should return 0 for future compatibility.

Adobe Premiere Software Development Kit 117

Zoom Modules

The selector can take the following values:

Table 0-23: Zoom Module Selector Values

Selector name Value Description

cmdCanZoom 1 Tell Premiere whether the module can zoom the specified
card.

cmdZoomin 2 Zoom the specified card in to x2, remembering old settings.

cmdZoomOut 3 Zoom the specified card back out using stored settings.

cmdCanDo 4 Tells Premiere whether the module can mode switch this card

cmdGetSupportedM | 5 Returns bits representing the supported modes

odes

cmdGetMode 6 Returns the current card mode

cmdSetMode 7 Changes the card’s mode

Note: For zoom modules the selector values start at 1, not zero like the rest
of Premiere’s plug-in modules.

cmdCanZoom

The cmdCanZoom selector is used to determine whether your zoom module
can zoom a specified video card. Information about the video card in
question is available in the ZoomHand (described below). Return a result of
1 if you can zoom the specified card, O if not.

cmdZoomin

The cmdZoomln selector tells your zoom module to save the current zoom/
pan state of the specified card and then zoom it to times-two zoom.
Typically the zoom module allocates a handle for the current state of the
card and stores it in the zoomData field of the ZoomHand. Most cards that
provide hardware zoom also provide hardware pan. If this is the case for
your card, you should pan the screen to the upper left of the portion of
desktop provided by the card.

cmdZoomOut

The cmdZoomOut selector tells your zoom module to restore the specified
card’s zoom/pan settings from the data you stored in the zoomData field of
the ZoomHand. Premiere will have cleared the screen before calling your
zoom module with this selector. If you allocated a handle and stored it in
the zoomData field of the ZoomHand, you should dispose the handle after
restoring the state of the card.

cmdCanDo

The cmdCanDo selector is used to determine whether your zoom module can
change the card mode (NTSC, PAL, etc.) Information about the video card in
question is available in the ZoomRec structure (described below). Return a
result of 1 if you can mode-switch the specified card, 0 if not. Note that it’s
okay return different responses to a cmdCanDo and cmdCanZoom. If you
return O to this message, your zoom module will never receive the following
three messages.

cmdGetSupportedModes

The cmdGetSupportedModes selector is used to determine which the set of
modes to which the video card can be switched (NTSC, PAL, etc.). The set of
modes that Premiere is interested in are represented by the following bit
flags:

Adobe Premiere Software Development Kit 118

Zoom Modules

enum {
nodeNTSC = 0x0001, /'l US NTSC
nodePAL = 0x0002, /| European PAL

nmodeNTSC443 = 0x0004 // Japanese NTSC
3

Add the modes your module (and the video card) can handle together and
put them in the mode field of the ZoomRec structure (described below). For
instance, if your card can handle NTSC and PAL modes, you would do the
following:

(*theDat a) - >node = nmpdeNTSC + npdePAL;

cmdGetMode

The cmdGetMode selector tells your zoom module to return the current card
mode (one of the values in the enum above) in the mode field of the
ZoomRec.

cmdSetMode

The crmdSetMode selector tells your zoom module to mode-switch the video
card to the mode specified in the mode field of the ZoomRec.

The ZoomRec Structure

Your zoom module is passed a handle to a ZoomRec through the parameter
theData. Here’s the structure of a ZoomRec:

typedef struct

{
GDHandl e t heDevice; // The @evice of board to zoom

short boardl D /1 The boardl D of the video card
Handl e zoomDat a; /1l Can be used by nodul e during zoonl n/ Qut
short node; /1l Screen node is passed in/out here

} ZoonRec, **ZoonHand;

The fields are as follows:

theDevice
The theDevice field gives the GDevice handle of the board being zoomed.

boardID
The boardID field gives the board ID number of the board being zoomed.

zoomData

The zoomData field is initially set to nil. When you get a cmdZoomin you
typically allocate a handle of state information and store it in this field of
the ZoomRec. The value of the zoomData field will be retained, so that when
you are later called with a cmdZoomOut selector, you may use the
information stored here to restore the video card’s state.

mode

The mode field is used for mode information (in and out) for the
cmdGetSupportedModes, cmdGetMode, and cmdSetMode messages.

Adobe Premiere Software Development Kit 119

Zoom Modules

Other Detalls

When the user chooses Print To Video from the Export submenu of the File
menu, Premiere calls each of the installed zoom modules with a
cmdCanZoom selector, until one returns a value of 1. It then sends that
module a cmdCanDo to see if the module can mode-switch the card. If the
module returns 1, then it sends a cmdGetSupportedModes to figure out
which screen modes to make available in the “Screen Modes” popup menu.
If the module returns 0 in response to the cmdCanDo message, then the
Screen Modes popup is set to “current” and dimmed out. Having gathered
this information, Premiere presents the Print To Video dialog box on the
screen in question. If the user chooses hardware zoom and a mode switch
(for instance), Premiere clears the playback screen to black, sends the zoom
module a cmdGetMode to save the current mode, sends a cmdSetMode to
mode-switch the screen, sends a cmdZoomln to zoom in on the top-left of
the screen, plays the clip(s) on the screen, clears the screen to black again,
sends a cmdSetMode with the old mode to reset the screen mode, and finally
sends a cmdZoomOut to restore the screen zoom to normal. If the screen
being zoomed is the main screen (that is, the one with the menu bar),
Premiere takes care of hiding and restoring the menu bar.

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for a zoom
module that you can use as an example of how to write your own.

Video - SuperMac

This is the source code for the zoom module used to zoom SuperMac video
cards. It makes card-specific calls to the SuperMac video driver to zoom and
pan the card.

Adobe Premiere Software Development Kit 120

Device Control Modules

A device control module allows Adobe Premiere to control hardware devices
such as tape decks or laser disc players.

Device control modules are called by parts of Premiere that take video input,
like the Movie Capture window and the Waveform Monitor. A device control
module’s most important functions are to set hardware operating modes,
tell Premiere what mode the hardware is in, and provide Premiere with
timecode from the hardware.

Device control modules are stored in files of type ‘DevC’, with creator ‘PrMr’.
The name of the file is what appears in the popup menu in the Device
Control dialog box. Device control module files contain at least the resources
which are listed below. Following the table is a detailed description of each
resource.

Table 0-24: Device Control Module Resource IDs

Type & ID Description

DevC 1000 The device control module code (68K). The entry point is resource’s first
byte.

Devc 1000 The device control module code (PowerPC). The entry point is specified by
the PEF.

NOTE: Any other resources contained in an device control module’s
resource file should have IDs in the range 600 to 999.

DevC/Devc 1000

This resource contains the code for your device control module, DevC and
Devc containing 68K and PowerPC code respectively. The entry point should
be declared like this:

pascal short Devi ceControl Modul e (short sel ector, DeviceHand theData);

The return value should be noErr (0) if no error occurs during the execution
of your device control module, or any non-zero value if an error occurs.

Adobe Premiere Software Development Kit 121

Device Control Modules

The selector can take the following values:

Table 0-25: Device Control Module Selector Values

Selector name Value Description

dsinit 0 Create data structures, choose an operating mode.

dsSetup 1 Put user settings dialog, if any.

dsExecute 2 Perform a specified device control command.

dsCleanup 3 Dispose data structures.

dsRestart 4 Restart module—used at startup to reconnect to a device.

dsQuiet 4 New in 4.2 — Disconnect from device, but don’t dispose of
allocated structures yet.

dsinit

The dslnit selector tells your device control module to create its local data
structure and store its handle in the deviceData field provided in the
DeviceRec structure passed to you in the call. You should choose a default
operating mode if more than one are available. If necessary, a dialog can be
presented during this call to prompt the user for settings. If you need to
open drivers or make serial connections to your hardware, you also do this
here. See the Implementation Tips section below for more information about
the dsinit selector.

dsSetup

The dsSetup selector tells your device control module to put up your custom
settings dialog box, if any. This might include choosing between several
device control methods or selecting a serial port. If your device control
module doesn’t require any additional parameters from the user, calls with
the dsSetup selector can be safely ignored (but should return nokErr).

dsExecute

The dsExecute selector tells your device control module to perform a device
control operation based on (*theData)->command. See the Commands
section below for a detailed description of the different commands and the
actions you should take.

dsCleanup

The dsCleanup selector tells your device control module to disconnect from
any hardware and dispose of its local data handle (that is, the data you may
have stored in (*theData)->deviceData).

dsRestart

The dsRestart selector is just like dsInit, except that (*theData)->deviceData
handle has already been set up. Premiere stores this information in the
preferences file so that when Premiere is started up, connections to
hardware devices can be reestablished. See the Implementation Tips section
below for more information about the dsinit and dsRestart selectors.

dsQuiet

This command is new in Premiere 4.2. The dsQuiet selector tells your device
control module to disconnect from any hardware, but unlike dsCleanup, it
should not dispose of any allocated structures yet.

Adobe Premiere Software Development Kit 122

Device Control Modules

The DeviceRec Structure

Your device control module is passed a handle to a DeviceRec through the
parameter theData. Here’s the structure of a DeviceRec:

typedef struct

{
Handl e devi ceDat a; /1 Local data which plug-in creates
short commrand; /1l The conmand to perform
short node; /1 New node (in) or current node (out)
| ong tinecode; /1 New timecode (in) or current (out)
short ti mefornmat; /1 Format: O=non-drop, 1=drop-frame
short tinmerate; /' Frames/second for tinmecode above
| ong features; /] Features (out) for cndGet Features
short error; /1 Error code (out) from any routine
short preroll; [l Pre-roll time (secs) for cndlLocate
Cal | BackPtr call back; // Abort-check proc for cndLocate
ProcPtr PauseProc; /| Pause-current-operations proc
ProcPtr ResumeProc; /1 Resume-current-operations proc

} Devi ceRec, **Devi ceHand;

The fields are as follows:

deviceData

The deviceData field is where you should store a handle to your local data at
dsinit time. Premiere stores this data in the Premiere preferences file for
later retrieval (after which it is passed to the dsRestart handler). The value of
this field is retained across calls.

command

The command field tells you what command is being executed when you get
a call with the dsExecute selector. See the Commands section below for
detailed information about this field’s possible values.

mode

The mode field is used three ways. For dsExecute/cmdNewMode calls, mode
contains the new mode into which Premiere is instructing you to put a
device. For dsExecute/cmdStatus calls, mode is where you store the current
mode of the device. The last mode you reported will still be there. For
dsExecute/cmdShuttle calls, mode contains the shuttle rate, which may have
the value -100 to 100. Negative values indicate you should shuttle
backwards, positive values indicate that you should shuttle forward.

timecode

The timecode field is used three ways. For dsExecute/cmdGoto and
dsExecute/cmdLocate commands, the timecode field tells you the timecode
to which Premiere wants you to move the deck. For dsExecute/cmdStatus
calls, you return the deck’s current timecode via the timecode field, where -1
will display “N/A” (not available), -2 will blank the timecode display, and -3
will display “Searching...”. For dsExecute/cmdJogTo calls, timecode specifies
the location to which you should jog the deck.

timeformat

The timeformat field is used to report the format of timecode for a
dsExecute/cmdStatus call. The field should be set to 0 for non-drop frame, or
1 for drop-frame.

Adobe Premiere Software Development Kit 123

Device Control Modules

timerate

The timerate field is used to report the frames-per-second rate of timecode
for a dsExecute/cmdStatus call. The field should be set to 24, 25, or 30.

features

The features field is used to report the features that a device and/or device
control module is capable of in response to a dsExecute/cmdGetFeatures call.
See cmdGetFeatures in the Commands section below for more details.

error

The error field is used to report errors that occur within your device control
module. Whenever an error occurs, set (*theData)->error to the appropriate
error code and return a non-zero value from your device control module.

preroll

The preroll field is used when you get a dsExecute/cmdLocate call. The
preroll amount is how far before (smaller timecode) the time specified in
timecode you should seek the deck. The preroll value is the product of a
calibration sequence the user can perform. See cmdLocate in the Commands
section below for more details on how to use the preroll value.

callback

The callback field contains a pointer to a routine that you can call during
dsExecute/cmdLocate calls to determine if the user is attempting to abort the
locate operation (by hitting Command-. for instance). The prototype for the
abort callback routine is:

typedef pascal char (*Call BackPtr) (void);

A non-zero result indicates that the user has attempted to terminate the
locate operation.

Note that when a 68K plug-in is called from Power Mac Premiere, the
callback field actually contains a UPP rather than a PowerPC procedure
pointer.

PauseProc

The PauseProc field contains a pointer to a routine that you can call to
temporarily pause any QuickTime sequence grabber operations in a device-
controlled window. Normally you would call this routine before putting up
an error alert, for instance:

(*(*theDat a) - >PauseProc) () ;
Al ert Systen(stopl con, false, kErrors, kMenfailure, 0, 0);
(*(*theDat a) - >ResuneProc) () ;

Important! If you don’t call the PauseProc before putting up an error alert (or any
other kind of window), video may be played through over your window. That is the
purpose of the PauseProc.

Note that when a 68K plug-in is called from Power Mac Premiere, the
PauseProc field actually contains a UPP rather than a PowerPC procedure
pointer.

ResumeProc

The ResumeProc field contains a pointer to a routine that you should call to
resume sequence grabbing after calling the PauseProc. It is important that
every call to PauseProc be matched by a call to ResumeProc.

Adobe Premiere Software Development Kit 124

Device Control Modules

Note that when a 68K plug-in is called from Power Mac Premiere, the
ResumeProc field actually contains a UPP rather than a PowerPC procedure
pointer.

Commands

When you receive a call with the dsExecute selector, the command field of
the DeviceHand tells you what device control command to execute. Here’s a
list of the commands and their basic functions. A detailed description of
each command follows the list.

Table 0-26: Device Control Commands

Command name | Value Function
cmdGetFeatures 0 Fill in the features field with the device’s features.
cmdStatus 1 Return the deck mode and current timecode.
cmdNewMode 2 Change the deck’s mode to a new mode.
cmdGoto 3 Go to a particular time code.
cmdLocate 4 Go to a particular time code and return when you’re there.
cmdShuttle 5 Shuttle the deck at a specified rate.
cmdJogTo 6 Position the deck quickly to the location in timecode.
cmdJog 7 New in 4.2 — Jog at rate specified in 'mode’, from -15 to +25.
cmdEject 8 New in 4.2 - Eject the media

cmdGetFeatures

The cmdGetFeatures command tells you to fill out (*theData)->features with
the features of a deck (or of your device control module, if the module can
only control a subset of the deck’s capabilities). The value you set should be
made up of the following bit flags:

enum {
fDrvrQui et /1l Newin 4.2 - driver supports qui et node
f HasJoghMbde /[l Newin 4.2 - device has jog capabilities
f CanEj ect /1l Newin 4.2 - device can eject its nedia
f St epFwd = 0x8000, /1 Can step forward one frane
f St epBack = 0x4000, /'l Can step back one frane
f Record = 0x2000, /1 Can record
fPositionlnfo = 0x1000, // Returns position (tinecode) info
f Got o = 0x0800, /'l Can seek to a specific frane
f1 5 = 0x0400, /1l Can play at 1/5 speed
f1 10 = 0x0200, /1l Can play at 1/10 speed
fBasi ¢ = 0x0100, /1 Supports Stop, Play, Pause, FF, Rew

f HasOpti ons = 0x0080, /1 Plug-in puts up an options dialog
f ReversePl ay = 0x0040, // Supports reverse play

f CanLocate = 0x0020, /1 Can locate a specific tinmecode

fsStill Frame = 0x0010, /1 Frame addr-able device |like |aser disc
f CanShuttl e = 0x0008, /1 Supports the Shuttle comrand

f CanJog = 0x0004 /1 Supports the JogTo conmand

b

New in Premiere 4.2 is the fDrvrQuiet bit. If the driver sets this bit, Premiere
will issue a dsRestart when a movie capture window is opened and a dsQuiet
when the window is closed. A dsCleanup will still be sent at program exit
time.

Adobe Premiere Software Development Kit 125

Device Control Modules

Also new in Premiere 4.2 is the fHasJogMode bit. When set, Premiere will use
the cmdJog with a rate modifier rather than sending a new timecode to
cmdJogTo each time.

fCanEject is another new device control bit. Setting this will cause Premiere
to send you a cmdEject when performing a batch capture and the current
reel is known and is not the reel needed.

The fStepFwd bit indicates that you can step a deck forward one frame. If
you set this bit, Premiere will make available a step-forward button, and you
may get called to change your mode to modeStepFwd.

The fStepBack bit indicates that you can step a deck backward one frame. If
you set this bit, Premiere will make available a step-backward button, and
you may get called to change your mode to modeStepBack.

The fRecord bit indicates that a deck can record. If you set this bit, you may
get called to change your mode to modeRecord.

The fPositionInfo bit indicates that a deck and device control module can
retrieve position information and pass it back to Premiere.

The fGoto bit indicates that a device can seek to a particular frame. If you
set this bit, you must also set fPositioninfo, and you must be prepared to get
cmdGoto calls.

The f1_5 bit indicates that a device can play at one-fifth speed. If you set this
bit Premiere makes available the 1/5 speed playback option and you may get
called to change your mode to modePlayl 5.

The f1_10 bit indicates that a device can play at one-tenth speed. If you set
this bit Premiere makes available the 1/10 speed playback option and you
may get called to change your mode to modePlayl 10.

The fBasic bit indicates a deck and perform the basic five deck control
operations: stop, play, pause, fast-forward, and rewind. If you set this bit,
Premiere makes available controls for these functions and you must be
prepared to get called to change your mode to modeStop, modePlay,
modePause, modeFastFwd, and modeRewind, respectively.

The fHasOptions bit indicates that your device control module has an options
dialog, and that you support the dsSetup message. If you set this bit,
Premiere makes available the “Options...” button in the Device Control
Preferences dialog box. If the user clicks this button, your device control
module will get a dsSetup call.

The fReversePlay bit indicates that a deck can play in reverse. If you set this
bit, you may bet calls to change your mode to modePlayRev, (and also
modePlayRevl 5 and modePlayRevl 10 if you set the f1_5 or f1_10 bits).

The fCanLocate bit indicates that a deck can accurately locate a particular
timecode and supports the cmdLocate command. Adobe encourages
developers of device control modules to support cmdLocate, which is
typically more accurate than cmdGoto.

The fStillFrame bit indicates that a device is frame-addressable, like a laser
disk player, and that it is capable of very clean still-frame output. This bit is
currently not used by the Movie Capture, Step Capture, or Waveform
Monitor windows.

Adobe Premiere Software Development Kit 126

Device Control Modules

The fCanShuttle bit indicates that a device is capable of variable-speed
shuttle operations, both forward and backwards. If you set this bit, Premiere
may make cmdShuttle calls to your device control module.

The fCanJog bit indicates that a device can quickly move to a nearby
timecode location. If you set this bit, Premiere may make cmdJogTo calls to
your module.

cmdStatus

The cmmdStatus command is Premiere’s way of finding out what’s going on
with a device. It wants two pieces of information: the deck’s current mode
(like play, pause, etc.) and the timecode currently rolling under the deck’s
head.

You should store the device’s current mode into (*theData)->mode, and
store the current timecode value into (*theData)->timecode. Be sure to set
(*theData)->timerate and (*theData)->timeformat as described in The
DeviceRec Structure above.

The values of mode and timecode persist from one cmdStatus call to the
next. So, if you only know one of the two pieces of information, store the
one you know, and leave the other alone. For instance, it may be that a
device control module has to make two separate driver calls to determine
these two pieces of information. In that case, you should alternately request
one and return the other, as shown in the figure below:

dsStatus #1 dsStatus #2 dsStatus #3 dsStatus #4
DevC DevC DevC DevC
mode: stop mode: play mode: play mode: pause
time: 00.00 time: 00.00 time: 00.01 time: 00.01

| 4 | 4 | 4 |

Ask for mode Ask for time: Ask for mode: Ask for
mode play time 00:01 mode pause time
Driver Driver Driver Driver

cmdNewMode

The cmdNewMode command tells you to put a device into a new operating
mode, as specified in (*theData)->mode. The modes you may be asked to go
into (depending upon your features) are as follows:

enum
{
nodeStop = O,
nodePl ay,
nodePl ayl 5,
nodePl ayl 10,
nodePause,
nodeFast Fwd,
nodeRew nd,
nodeRecor d,
nodeGot o,
nodeSt epFwd,
nodeSt epBack,
nodePl ayRev,
nodePl ayRev1 5,
nmodePl ayRevl 10

Adobe Premiere Software Development Kit 127

Device Control Modules

cmdGoto

The cmdGoto command tells you to seek a device to the timecode specified
by (*theData)->timecode. Subsequently you should place the device in pause
mode (if you were able to complete the seek) or stop mode (if there was an
error). Typically you will set up some kind of asynchronous seek and return
immediately.

Premiere will continue sending cmdStatus requests until the mode changes
to cmdPause or cmdStop. While you are seeking you should place the value
modeGoto in (*theData)->mode. This will cause Premiere to put
“Searching...” in the time code display of the supervising window. Once
you’ve completed the seek, store the new mode (modePause or modeStop) in
(*theData)->mode. Note that Premiere prefers cmdLocate (described below)
to cmdGoto, and often cmdLocate is easier to implement anyway (because it
Is synchronous).

cmdLocate

The crmdLocate command tells you to seek you device to an exact frame
location and return immediately with the device in modePlay. This is to be
done as a synchronous operation (your device control module should not
return until the operation is complete or an error occurs).

The value in (*theData)->preroll tells you how far before the time specified
in (*theData)->timecode you should actually seek to. In other words,
subtract (*theData)->preroll from (*theData)->timecode and seek there. The
preroll value can be set by the user and is generally determined through a
calibration process that takes into account the various latencies of the
computer, deck, and device control 1/O channel.

During the execution of this command, you can use the abort-check routine
(*theData)->callback to determine if the user has attempted to abort the
operation (with Command-period, for instance).

cmdShuttle

The cmmdShuttle command is sent when the user grabs the shuttle control on
the screen. The farther the user drags the control from the center, the
higher speed he wants the deck to shuttle.

When you receive a cmdShuttle command, (*theData)->mode is the shuttle
speed:

-100 -50 0 50 100

Reverse Reverse Pause Play Play fast
play fast play

If the deck can handle intermediate speeds, you should use them. The idea is
to simulate a shuttle control on the front panel of a deck. You may need to
map speed values to speeds differently than shown above to get the right
feel. If a deck doesn't support continuously variable speeds (which many
don't), then quantize the speed. For example, here's how Premiere's Visca
device control module quantizes the speed value into the set of available
deck play speeds:

Adobe Premiere Software Development Kit 128

Device Control Modules

if (speed <= -90) pb->csParani4] = kRevScan;
else if (speed <= -70) pb->csParani4] = kRevFast 2;

else if (speed <= -50) pb->csParani4] = kRevFast1;
else if (speed <= -20) pb->csParani4] = kRevPl ay;
else if (speed <= -12) pb->csParani4] = kRevS| owl;

else if (speed <= -5) pb->csParanf4] = kRevSl ow?;

else if (speed < 5) pb->csParani4] = kPause;
else if (speed < 12) pb->csParani4] = kSl ow2;
else if (speed < 20) pb->csParani4] = kS| owl;
else if (speed < 50) pb->csParani4] = kPl ay;
else if (speed < 70) pb->csParani4] = kFast1;
else if (speed < 90) pb->csParani4] = kFast?2;

el se pb->csParani 4] = kScan;
To get the right feel, the Visca module places kRevPlay at -20 rather than -50.

If a device control module does not implement shuttling but supports
multiple play speeds, Premiere will simulate shuttling by telling the module
to play at different rates depending upon the shuttle control position. Of
course, better results can be obtained by directly supporting shuttling with
the cmdShuttle command.

cmdJogTo

The cmdJogTo command is sent when the user grabs the tractor tread
control on the screen. Premiere calculates a new target timecode based on
the current time and the distance the user has dragged the tread.

When you receive a cmdJogTo command (*theData)->timecode is the target
time code. You should attempt to jog the deck to this location as quickly as

possible. (*theData)->timecode will never be far from the current time. How
exactly you choose to get the deck to the desired time is up to you—you may
choose to step the deck, shuttle, seek, or whatever.

If a device control module does not implement jogging but supports
stepping, Premiere will simulate jogging by stepping forward or backward.
This does not take into account the distance the user dragged the tractor
tread—only the direction. Therefore, better results can be achieved by
implementing the cmdJogTo command.

Implementation Tips

Handling dsinit and dsRestart

The dsinit and dsRestart selectors are nearly the same, except that dsinit
needs to allocate a new (*theData)->deviceData handle and dsRestart uses
one that is provided. Because of this, a handy way of handling these
selectors is to let the dsInit selector fall into the dsRestart case, as the code
extract from Premiere’s Visca module below shows:

Adobe Premiere Software Development Kit 129

Device Control Modules

switch (selector)
{
case dslnit: // INT
if (!((*theData)->devi ceData = NewHandl eC ear (si zeof (Local Rec))))
{
/1 Allocation failed
result = kMentail ure;
(*(**theDat a) . PauseProc) ();
Al ert System(stoplcon, false, kErrors, kMenfailure, 0, 0);
(*(**theDat a). ResunmeProc) ();
br eak;

/1 Allocation succeeded so fall through...

case dsRestart: // RESTART
/1 Sane as dslnit, except the local data handl e has al ready been
/1 allocated and filled in with its contents fromthe last tine.
/1l For devel opnent purposes, we do a SetHandl eSize, in case the
/1 definition of the local data has changed.
if ((*theData)->deviceData &&
Get Handl eSi ze((Handl e) (*t heDat a) - >devi ceData) ! = sizeof (Local Rec))

{
Saf eSet Handl eSi ze((Handl e) (*t heDat a) - >devi ceDat a, si zeof (Local Rec));
Fill Mem(*(*theDat a)->devi ceData, sizeof(Local Rec), 0x00);
}
if ((*theData)->devicebData == nil || MenError())
{
result = kMenfFai l ure;
(*(**theDat a) . PauseProc) ();
Al ert System(stoplcon, false, kErrors, kMenfFailure, 0, 0);
(*(**theDat a). ResunmeProc) ();
br eak;
}

/1 Open the driver
if (result = OpenDriver((StringPtr)"\p.Vi SCA",
& *(Local Rec **)(*theDat a) - >devi ceDat a) - >dRef Num))

Notice that the code checks whether the (*theData)->deviceData is the same
size as LocalRec, the device control module’s parameter record. The device
control data record is stored by Premiere in the preferences file. If you
change the size or layout of a parameter record during development and re-
run Premiere, Premiere will kindly pass you a now-invalid deviceData blob.
That’s why the check is there—if the size isn’t right, it just reallocates it and
zeros the handle.

Putting up error alerts

You can use Premiere’s AlertSystem call to put up error alerts if you
encounter errors in a device control module. Just remember to frame the
error alert calls with calls to PauseProc and ResumeProc so that Premiere can
suspend any video that might be playing through the supervising window, as
shown below:

(*(**theDat a) . PauseProc) ();

Al ert System(stoplcon, false, kErrors, kMenfailure, 0, 0);
(*(**theDat a) . ResunmeProc) () ;

Examples

The Adobe Premiere Plug-In Toolkit comes with source code for a skeleton
device control module that you can use as a basis for your own.

Adobe Premiere Software Development Kit 130

Device Control Modules

Device
This is the skeleton source code for an Adobe Premiere device control
module. It is heavily commented to serve as additional documentation.

Adobe Premiere Software Development Kit 131

Other Plug-In Types

Premiere supports several more plug-in types whose descriptions are beyond
the scope of this document, they are briefly described below.

Photoshop Filters

Premiere can load and apply Adobe Photoshop filters to video clips, but
there are currently several limitations to this. Premiere only supports the
Photoshop 2.5 API. This has several implications, but most notably the filter
must include a PiMI resource to be recognized by Premiere and must not call
any Photoshop 3.0 or 4.0 callbacks. Another major implication is Premiere
will only load the filters 68K code (since Photoshop 2.5 was pre-PowerPC).
With some clever programming you can include an 8BFm (note the lower
case m) resource in your filter to find and load your filters PPC segment.

It should also be noted that because Photoshop can work with images
exceeding the capacity of memory, image data is parceled out to Photoshop
filters in a less efficient manner than native Premiere video filters (‘*VFIt’
modules). If you are writing a video-specific filter you will find it is generally
easier to write a VFIt than to write a Photoshop filter.

If you do choose to ship Premiere-compatible Photoshop filters (which we
certainly encourage), Premiere supports the inclusion of the FItD resource in
the Photoshop filter’s resource fork. This optional resource describes the
filter’s data structure such that Premiere can interpolate the filter’s settings
over time. For more information about the FItD resource, see the FItD
section of the Video Filters chapter.

For information on writing Photoshop filters, please refer to the Adobe
Photoshop Plug-Ins Software Development Kit. It is available from the Adobe
Developers Association and is included on the Adobe Graphics and
Publishing SDK CD-ROM and is also available on the Adobe Web site
(www.adobe.com).

The DissolveSans filter included in the Photoshop 4.0 SDK is a good example
of a truly cross-application Photoshop filter. It is fully functional in current

and older versions of Photoshop and Premiere 4.2. It includes both the PiPL
and PiMI resource, and an FItD resource.

Window Handler Modules (‘HDLR’)

Window handler modules are how all the windows in Adobe Premiere are
implemented. Most of the windows you see are serviced by handlers in the
Adobe Premiere resource file. Others, like Movie Capture and Title are
stored in plug-ins. Handlers are first-class entities in Premiere, receiving
events and Premiere’s drag-and-drop functionality.

Adobe Premiere Software Development Kit 132

Other Plug-In Types

Audio/Video Import Modules (‘Draw’)

Audio/video import modules handle file-format conversion for Adobe
Premiere. Draw modules make all types of video and audio media look the
same to Premiere internally. New file formats can be supported through the
implementation of Draw modules.

Bottleneck Modules (‘Botl’)

Bottleneck modules are like ‘INIT’s for Adobe Premiere. They are loaded and
run once at application startup. The main use for a Botl module is the
replacement of one of Premiere’s basic bottleneck routines. It is possible to
provide hardware acceleration of Premiere through Botl modules.

How to Get More Information

These plug-in types (HDLR, Draw, Botl) are more complex and development
requires the disclosure of Adobe proprietary information to the developer.
The Adobe Premiere Advanced Plug-In Supplement is available from Adobe
only under non-disclosure and by special arrangement. Contact Adobe
Developer Relations for more information.

Adobe Premiere Software Development Kit 133

AlBItSY S EIM . . . 56
APPENA . . . 27
AUdioLImMIt. .. e 69
AUIOMIX. . .o e 69
AudioStretCh e 68
AUIOSUM . . e 69
BCATOBIN 61
BCAT oSt . . . 61
BetterNewWGWoOrld 57
BINTOBCA 62
BINTOStr. . . . 61
BUIIASTIING. . . . o 41
BUttONFrame 20
CenterModal 54
CenterModalKeys 54
CenterWinN2WiN. . .. 26
CenterWiNdOW 26
CenterWindowOnMain e 27
CenterWindowOnMain e 56
CenterWinOffset 26
CheCKStOP. . . oo 52
CheckStopUpdate 52
ClPASPECT. . . oot 45
ClpFile . . 45
ClPRAtE. . . .o 44
ClPSIZE . . o 45
ClPStart . . .o 44
ClipWidth . .. 45
COolOrB2RGB e 58
CountClipMarkers 46
CountTypeBIoCKS.o 64
CoUNtVOIUMES. . . . 36
DatalooKUP. . . .o 34
decimalfilter. 55
DeleteHandItem. e 35
DepthOT . 30
DirlDFromPath 35
DisableDItem 17
DisposeModal 54
DIStOrtFIXEd oo e 70
DIStOrtPOlYgON . . . 68
DItNErBOX . . . 59
DrawACoONtrol 25
Draw DIt em . . . 18
DrawFulllCLBHaNd 32
DrawlCL8 e 31
DrawlCLBHaNd 32
DrawltemBoOX. 22

Adobe Premiere Software Development Kit 134

DrawltemFrame. e 22
DrawW S Cd . o 31
DraW ST RV eI . . . e 31
EAItWIpeCodeso 64
EnableDItem 17
EqQUalCOlOr. . . .o 33
EqQUalColOr8. 33
ErASE G OW . . . ot e 30
BXISTS . o o o a7
ExtractBlockData 65
ExtraNewHandle 44
FiIMEM . 16
FINABIOCK. . . . o e 64
FINAClipMarker 46
FINAFTYPE . .ot 47
FINAINAStriNg 28
FINSelect 33
FIXEOADIV. . . oo e 37
FIXEATOFIXEA . . .o 70
FIXMUIDIV. . . o 37
FlashControl e 20
FOrmatTimecode o e 60
FrameBULtON e 20
FraMEEIaSE . . . o 28
FrameGrayBUutloN e 20
freehooKo 54
OBItLBOK. . .. 76
gBottleNecKs 75
gCOMPIIEEIT . . . 72
gDecimalPt 75
GetAGIobal 41
GO AT OW . . o e 33
GetBIOCK . . . 65
GetClipBackwards 46
GetClipMarker. 46
GetClipTitle 45
GetCMaAX. . . ot e e 23
GetCRef . 23
GetCValUe. . . . 17
GetDHandle. 19
GetDRECT. . . .o e 18
G DT Y PE . .ot e 19
G ET X . . .ot e 22
GetEXpOrtClipID. . . . 62
GetEXPOrtDIVISOr . . . ottt 62
GetEXPOITFPS e 63
GetEXPOITFSSPEC ot 62
GetEXPOrtMOVIE. . . o 62
G RS SR . . o o i 47

Adobe Premiere Software Development Kit 135

GetGroupVal 18
GetindVolumMe 36
GetlVal . . 21
GetMenuWIidth 37
GetMOIIErS . . . o oo 52
GelRAtE 63
GetVolINdeX.o 36
GetWIPECOAES . . .ottt 64
OEXPOrtRES. . . 72
OGS oo 73
gHasOUtline. 75
gHaveDragANdDIop 77
gLOCKSTIIIASPECE. 76
gMaxHeIght. 76
gMaxXWIidth 76
OMUIRIPIY . . . 75
goNneBItWoOrId 73
gPIUgINDIrID . . . 73
gPluginVRefNUM 72
OPrefDIrID . . . 73
gPrefVRefNUM 73
OPIINEREC. . . . 73
OO . . oo 77
OO VIS o e 77
ORESFIIENUM . . . 72
ORGB2UV . o 74
ORGB2Y . . ot 74
gSaveReT . . . 71
gStillDefault. 72
OSYSV IS ION . . o et 72
OSYSWINAOW . . . 76
gTempPDIrID 73
gTempVREfNUM . . . 73
OTICKDENOM . . . 76
OTICKNUMET . . . 76
OTICKS . oo 76
gUPPBOttIENECKSo 76
GWOTKDIIID . . . 73
gWoOrkVRefNUM 73
HatChBOX. . . . o 32
HiliteDCONtIol 17
ROUISTIItEr . . . 55
IMAgEK Y . .o 70
INsertHandItem e 35
INTEOXB0. . . . o 38
INValltem . e 19
LML ONg . ..o 37
LOCKHHI. . . o 16
longdoubletox80o 38

Adobe Premiere Software Development Kit 136

MakeWindowForFile 56
MakeWindowForTextFile 57
MapPOlYgON . . . 68
modalfilter. 55
MoOdify DI e 19
MYPULFIlE. . . 53
MY St UISOT . . o o et e e e 52
NeXIBIOCK 64
NextClipMarker e 46
noteXtiilter. 55
NUMTOQUAN 44
OffSCreenNBOX. . . . oot 58
OffsetControl 25
OffSetCSIZe . . . 24
ParSETIMECOUE.ttt e 60
PathFromDIrID 36
0] 38
PNt . o e 31
POSItIONDIAlOg 20
PrCustomGetFile 39
PrCustomGetFilePreview e 39
PrCustomPuUtFile e 39
PIDEDUG . . .o 50
PreviousClipMarker 46
PrModalDialog.o e 38
PrSCSetiNfO 40
PrSGSettingsDialogot e 40
PrSndDisposeChannel e 40
PrSndNewChannel. e 40
PrTrackCoNntrol. 40
PL2GDRVICE . . o vt 30
PL2GDEVICERECT it 30
PLCIOSE . . oo 32
QUICKADS. . . e 37
ReVErSeLOOKUD 34
RGB2C0I0r . .o 59
SafeDrawControl. 25
SafeNeWGWoOrld 57
SafeSetCValue. 25
SafeSetHandleSize 16
SafeSetupAlFFHeader. 50
SetAGIlobal 41
SetBackColor. o 29
SetBackGray 28
SEtCACHION . .. 24
SE M . o et e 23
SetCOlOr . .o 29
SetCOlOrFaCE oot 29
SetCREf . . . 23

Adobe Premiere Software Development Kit 137

SetCValue 18
SEEDRECT . . . oo e 18
SEET Xt . . 22
SetFONt . . 58
S aAY . . v e e 28
SetlVal. . .. 21
SetReSCTItle. . . . 24
SetSeleCt . . . 33
ShowModal. 54
SIOtTOGD . . . oot 32
SIOtTORECE 32
SpecialGetFile 53
SpecialGetFilePreview 53
SPINCUIS . o o 51
SOPCUIS . o e 51
SE2TIMIE L o 60
03] 1 0] o) 27
SHretChBItS 67
SHNGSSaAME. . . . 27
SHINGTIUNC . . . e e e e 43
SUTOBC . . .o 61
SUTOBIN. . . 61
SHIUCTSSAIME. . . . o e e e 17
SUPEIFIIEDISPOSE . . . oottt 50
SuperFilelnit. 47
SuperFileRead 49
SuperFileSeek 49
TIME 2Ot . 59
TrUNCLENgtN . . 44
TYPET OSIr . . e e 28
UpdateAlIWINAOWSo 56
USBII M . o o 19
Validate. 21
VI BN el o 30
WhichCell 33
WiIdenNMeNU 37
WiIdeNMeNUZ2BOX.o 36
XBOTOINT. . . . 38
x80tolongdouble 38

Adobe Premiere Software Development Kit 138

	Contents
	1 Introduction
	Windows vs. Macintosh Plug-Ins
	How to Use This Guide
	About This Guide
	What’s New
	Plug-In Overview
	Resources
	Native Power Macintosh Plug-Ins
	Building Premiere Plug-Ins
	Premiere Terminology
	Timecode

	Things to Remember

	2 The Utility Library
	General Macintosh Routines
	Memory Routines
	LockHHi
	SafeSetHandleSize
	FillMem
	StructsSame

	Dialog Routines
	EnableDItem
	DisableDItem
	HiliteDControl
	GetCValue
	SetCValue
	GetGroupVal
	DrawDItem
	GetDRect
	SetDRect
	InvalItem
	GetDType
	GetDHandle
	ModifyDItem
	UserItem
	FlashControl
	FrameGrayButton
	FrameButton
	ButtonFrame
	PositionDialog
	Validate
	SetIVal
	GetIVal
	SetEText
	GetEText
	DrawItemBox
	DrawItemFrame
	SetCMax
	GetCMax
	SetCRef
	GetCRef
	SetCAction
	SetResCTitle
	OffsetCSize
	OffsetControl
	DrawAControl
	SafeDrawControl
	SafeSetCValue

	Window Routines
	CenterWin2Win
	CenterWinOffset
	CenterWindow
	CenterWindowOnMain

	String Routines
	Append
	StrCopy
	StringsSame
	TypeToStr
	FindIndString

	Graphics Routines
	FrameErase
	SetGray
	SetBackGray
	SetColor
	SetBackColor
	SetColorFace
	EraseGrow
	DepthOf
	pt2GDevice
	pt2GDeviceRect
	VertCenter
	DrawSTRVert
	PinPt
	DrawSIC4
	DrawICL8
	DrawICL8Hand
	DrawFullICL8Hand
	SlotToGD
	SlotToRect
	PtClose
	HatchBox
	GetArrow
	EqualColor
	EqualColor8

	List Manager Lists Routines
	FindSelect
	SetSelect
	WhichCell

	Data Lists Routines
	DataLookup
	ReverseLookup
	DeleteHandItem
	InsertHandItem

	File Routines
	DirIDFromPath
	PathFromDirID
	CountVolumes
	GetIndVolume
	GetVolIndex

	Menu Routines
	WidenMenu2Box
	WidenMenu
	GetMenuWidth

	Math Routines
	LimitLong
	QuickAbs
	FixMulDiv
	FixedDiv
	inttox80
	longdoubletox80
	x80tolongdouble
	x80toint
	pie

	Premiere-Specific Routines
	Interface Compatibility Routines
	PrModalDialog
	PrCustomGetFile
	PrCustomPutFile
	PrCustomGetFilePreview
	PrSCSetInfo
	PrSGSettingsDialog
	PrTrackControl
	PrSndNewChannel
	PrSndDisposeChannel

	Global Accessor Routines
	GetAGlobal
	SetAGlobal

	Text, Strings, and Memory Routines
	BuildString
	StringTrunc
	TruncLength
	NumToQuan
	ExtraNewHandle

	Clip Routines
	ClipStart
	ClipRate
	GetClipTitle
	ClipFile
	ClipSize
	ClipWidth
	ClipAspect
	GetClipBackwards
	CountClipMarkers
	GetClipMarker
	FindClipMarker
	PreviousClipMarker
	NextClipMarker

	File Routines
	GetFSSpec
	FindFType
	exists
	SuperFileInit
	SuperFileRead
	SuperFileSeek
	SuperFileDispose
	SafeSetupAIFFHeader

	Debugging Routines
	PrDebug

	Cursor Control Routines
	SpinCurs
	StopCurs
	MySetCursor

	Event Routines
	CheckStop
	CheckStopUpdate
	GetModifiers

	Standard File Routines
	SpecialGetFile
	SpecialGetFilePreview
	MyPutFile
	freehook

	Dialog Routines
	ShowModal
	DisposeModal
	CenterModal
	CenterModalKeys
	modalfilter
	notextfilter
	hoursfilter
	decimalfilter
	AlertSystem

	Window Routines
	CenterWindowOnMain
	UpdateAllWindows
	MakeWindowForFile
	MakeWindowForTextFile

	Graphics Routines
	SafeNewGWorld
	BetterNewGWorld
	SetFont
	OffscreenBox
	Color82RGB
	RGB2Color
	DitherBox

	Time Code Routines
	Time2Str
	Str2Time
	ParseTimecode
	FormatTimecode
	StrToBin
	BinToStr
	StrToBcd
	BcdToStr
	BcdToBin
	BinToBcd

	Data Export Module Utilities
	GetExportMovie
	GetExportFSSpec
	GetExportClipID
	GetExportDivisor
	GetExportFPS
	GetRate

	EDL Export Module Utilities
	GetWipeCodes
	EditWipeCodes
	NextBlock
	CountTypeBlocks
	FindBlock
	GetBlock
	ExtractBlockData

	3 Bottlenecks
	The BottleRec Structure
	The Bottleneck Routines
	StretchBits
	DistortPolygon
	MapPolygon
	AudioStretch
	AudioMix
	AudioSum
	AudioLimit
	DistortFixed
	FixedToFixed
	ImageKey

	4 Globals
	Look But Don’t Touch!
	Read/Write Globals
	gSaveRef
	gExportRef
	gCompileErr

	Read Only Globals
	gSysVersion
	gResFileNum
	gStillDefault
	gPluginVRefNum
	gPluginDirID
	gWorkVRefNum
	gWorkDirID
	gTempVRefNum
	gTempDirID
	gPrefVRefNum
	gPrefDirID
	gPrintRec
	gGWStrip
	gOneBitWorld
	gRGB2Y
	gRGB2UV
	gDecimalPt
	gMultiply
	gHasOutline
	gBottleNecks
	gUPPBottleNecks
	gMaxWidth
	gMaxHeight
	gLockStillAspect
	gBit16OK
	gSysWindow
	gTicks
	gTickNumer
	gTickDenom
	gqd
	gQTVers
	gHaveDragAndDrop

	5 CDEFs
	Control Hits
	Control Types
	Horizontal Sliders
	Vertical Sliders
	Popup Menus

	6 Transitions
	FXvs 1000
	TEXT 1000
	Fopt 1000
	Fopt—first byte: Valid corners
	Fopt—second byte: Initial corners
	Fopt—third byte: Bit flags
	Fopt—fourth byte: Exclusive flag
	Fopt—fifth byte: Reversible
	Fopt—sixth byte: Has edges flag
	Fopt—seventh byte: Movable start point flag
	Fopt—eighth byte: Movable end point flag

	FXDF -1
	SPFX/SPFx 1000
	esExecute
	esSetup

	The EffectRecord Structure
	specsHandle
	source1
	source2
	destination
	part
	total
	previewing
	arrowFlags
	reverse
	source
	start
	end
	center
	privateData
	callBack
	bottleNecks
	version
	sizeFlags
	flags
	fps

	Examples
	Additive Dissolve
	Cross Zoom
	Wipe

	7 Video Filters
	FXvs 1000
	FltD 1000
	VFlt /VFlT 1000
	fsExecute
	fsSetup
	fsDisposeData

	The VideoRecord Structure
	specsHandle
	source
	destination
	part
	total
	previewing
	privateData
	callback
	bottleNecks
	version
	sizeFlags
	flags
	fps
	InstanceData

	Examples
	Video Noise
	Burn Time Code

	8 Audio Filters
	FXvs 1000
	FltD 1000
	AFlt/AFlT 1000
	fsExecute
	fsSetup
	fsDisposeData

	The AudioRecord Structure
	specsHandle
	source
	destination
	sampleNum
	sampleCount
	previewing
	privateData
	callback
	totalsamples
	flags
	rate
	bottleNecks
	version
	extraFlags
	fps
	InstanceData

	Examples
	Backwards [Audio]
	Pan

	9 Data Export Modules
	FXvs 1000
	FLAG 1000
	ExpD/Expd 1000
	edExecute

	The DataExportRec Structure
	markers
	numframes
	framerate
	bounds
	audflags
	audrate
	getVideo
	getAudio
	privateData
	specialRate

	Relevant Routines in the Utility Library
	Examples
	Flattened Movie
	Storyboard Image

	10 EDL Export Modules
	FXvs 1000
	ExpM/Expm 1000
	exExecute
	exTrue30fps

	The ExportRecord Structure
	dataHandle
	timeBase
	projectName

	The EDL Project Data Format
	Wipe Code Details
	Relevant Routines in the Utility Library
	Examples
	Generic EDL

	11 Zoom Modules
	ZooM/Zoom 1000
	cmdCanZoom
	cmdZoomIn
	cmdZoomOut
	cmdCanDo
	cmdGetSupportedModes
	cmdGetMode
	cmdSetMode

	The ZoomRec Structure
	theDevice
	boardID
	zoomData
	mode

	Other Details
	Examples
	Video - SuperMac

	12 Device Control Modules
	DevC/Devc 1000
	dsInit
	dsSetup
	dsExecute
	dsCleanup
	dsRestart
	dsQuiet

	The DeviceRec Structure
	deviceData
	command
	mode
	timecode
	timeformat
	timerate
	features
	error
	preroll
	callback
	PauseProc
	ResumeProc

	Commands
	cmdGetFeatures
	cmdStatus
	cmdNewMode
	cmdGoto
	cmdLocate
	cmdShuttle
	cmdJogTo

	Implementation Tips
	Handling dsInit and dsRestart
	Putting up error alerts

	Examples
	Device

	13 Other Plug-In Types
	Photoshop Filters
	Window Handler Modules (‘HDLR’)
	Audio/Video Import Modules (‘Draw’)
	Bottleneck Modules (‘Botl’)
	How to Get More Information

	Index

